Skip to main content

Advertisement

Log in

The effect of chemical and physical characteristics of spruce SEW pulps on enzymatic hydrolysis

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Conifers, which are the most abundant biomass species in Nordic countries, USA, Canada and Russia, exhibit strong resistance towards depolymerization by cellulolytic enzymes. At present, it is still not possible to isolate a single structural feature which would govern the rate and degree of enzymatic hydrolysis. On the other hand, the forest residues alone represent an important potential for biochemical production of biofuels. In this study, the effect of substrate properties on the enzymatic hydrolysis of softwood was studied. Stem wood spruce chips were fractionated by SO2–ethanol–water (SEW) treatment to produce pulps of varying composition by applying different operating conditions. The SEW technology efficiently fractionates different types of lignocellulosic biomass by rapidly dissolving hemicelluloses and lignin. Cellulose remains fully in the solid residue which is then treated by enzymes to release glucose. The differences in enzymatic digestibility of the spruce SEW pulp fibers were interpreted in terms of their chemical and physical characteristics. A strong correlation between the residual lignin content of SEW pulp and enzymatic digestibility was observed whereas cellulose degree of polymerization and hemicellulose content of pulp were not as important. For the pulps containing about 1.5 % (w/w) lignin, 90 % enzymatic digestibility was achieved at 10 FPU enzyme charge and 24 h of hydrolysis time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achyuthan KE, Achyuthan AM, Adams PD, Dirk SM, Harper JC, Simmons BA, Singh AK (2010) Supramolecular self-assembled chaos: polyphenolic lignin’s barrier to cost-effective lignocellulosic biofuels. Molecules 15:8641–8688. doi:10.3390/molecules15118641

    Article  CAS  Google Scholar 

  • Agarwal UP, Zhu JY, Ralph SA (2013) Enzymatic hydrolysis of loblolly pine: effects of cellulose crystallinity and delignification. Holzforschung 67:371–377. doi:10.1515/hf-2012-0116

    CAS  Google Scholar 

  • Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4. doi:10.1186/1754-6834-4-3

  • Brethauer S, Studer MH, Yang B, Wyman CE (2011) The effect of bovine serum albumin on batch and continuous enzymatic cellulose hydrolysis mixed by stirring or shaking. Bioresour Technol 102:6295–6298. doi:10.1016/j.biortech.2011.02.016

    Article  CAS  Google Scholar 

  • da Silva Perez D, van Heiningen A (2002) Determination of cellulose degree of polymerization in chemical pulps by viscosimetry. The 7th European Workshop on Lignocellulosics and Pulp (EWLP), August 26–29, Turku, Finland, pp 393–396

  • Ding S-, Liu Y-, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1060. doi:10.1126/science.1227491

    Article  CAS  Google Scholar 

  • Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31:353–364. doi:10.1016/S0141-0229(02)00134-5

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1989) Wood—Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities, IUPAC (International Union of Pure and Applied Chemistry). Pure and Appl Chem 59:257–268. doi:10.1351/pac198759020257

    CAS  Google Scholar 

  • Gregg DJ, Saddler JN (1996) Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol Bioeng 51:375–383. doi:10.1002/(SICI)1097-0290(19960820)51:4<375:AID-BIT1>3.0.CO;2-F

    Article  CAS  Google Scholar 

  • Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuel Bioprod Biorefin 5:215–225. doi:10.1002/bbb.269

    Article  CAS  Google Scholar 

  • Hamelinck CN, Gv Hooijdonk, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410. doi:10.1016/j.biombioe.2004.09.002

    Article  CAS  Google Scholar 

  • Himmel ME, Ding S-, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016

    Article  CAS  Google Scholar 

  • Iakovlev M (2011) SO2-ethanol-water (SEW) fractionation of lignocellulosics. Dissertation, Aalto University

  • Iakovlev M, van Heiningen A (2012a) Efficient fractionation of spruce by SO2–Ethanol–Water (SEW) treatment: closed mass balances for carbohydrates and sulfur. Chem- SusChem 5:1625–1637. doi:10.1002/cssc.201100600

    Article  CAS  Google Scholar 

  • Iakovlev M, van Heiningen A (2012b) Kinetics of fractionation by SO2–ethanol–water (SEW) treatment: understanding the deconstruction of spruce wood chips. RSC Adv 2:3057–3068. doi:10.1039/C2RA00957A

    Article  CAS  Google Scholar 

  • Iakovlev M, Pääkkönen T, van Heiningen A (2009) Kinetics of SO2–ethanol–water pulping of spruce. Holzforschung 63:779–784. doi:10.1515/HF.2009.109

    Article  CAS  Google Scholar 

  • Iakovlev M, Sixta H, van Heiningen A (2011) SO2-ethanol-water (SEW) pulping: II. Kinetics for spruce, beech, and wheat straw. J Wood Chem Technol 31:250–266. doi:10.1080/02773813.2010.523162

    Article  CAS  Google Scholar 

  • Iakovlev M, You X, van Heiningen A, Sixta H (2014) SO2–ethanol–water (SEW) fractionation of spruce: kinetics and conditions for paper and viscose-grade dissolving pulp. RSC Adv 4:1938–1950. doi:10.1039/C3RA45573D

    Article  CAS  Google Scholar 

  • Janson J (1974) Analytik der polysaccharide in Holz und Zellstoff. Faserforsch Textiltech 25:375–382

    CAS  Google Scholar 

  • Jensen W, Kremer KE, Sieril P, Vartiovaara V (1963) The chemistry of bark. In: Browning BL (ed) The chemistry of wood. Interscience Publishers, New York, pp 587–666

    Google Scholar 

  • Kamm B, Gruber PR, Kamm M (2006) Biorefineries—industrial processes and products: status quo and future directions. Wiley, Weinheim

    Google Scholar 

  • Kristensen J, Felby C, Jorgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2:11. doi:10.1186/1754-6834-2-11

    Article  Google Scholar 

  • Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103:201–208. doi:10.1016/j.biortech.2011.09.091

    Article  CAS  Google Scholar 

  • Lan TQ, Lou H, Zhu JY (2013) Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2–6.2. Bioenergy Res 6:476–485. doi:10.1007/s12155-012-9273-4

    Article  CAS  Google Scholar 

  • Leu S-Y, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Res 6:405–415. doi:10.1007/s12155-012-9276-1

    Article  CAS  Google Scholar 

  • Liu H, Zhu JY, Fu SY (2010) Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose. J Agric Food Chem 58:7233–7238. doi:10.1021/jf1001588

    Article  CAS  Google Scholar 

  • Lou H, Zhu JY, Lan TQ, Lai H, Qiu X (2013) PH-induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. ChemSusChem 6:919–927. doi:10.1002/cssc.201200859

    Article  CAS  Google Scholar 

  • Luo X, Zhu JY (2011) Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme Microb Technol 48:92–99. doi:10.1016/j.enzmictec.2010.09.014

    Article  CAS  Google Scholar 

  • Maloney TC (2000) On the pore structure and dewatering properties of the pulp fiber cell wall. Dissertation, Helsinki University of Technology

  • Maloney TC, Laine JE, Paulapuro H (1999) Comments on the measurement of cell wall water. Tappi J 82:125–127

    CAS  Google Scholar 

  • Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816. doi:10.1021/bp9900864

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Nakagame S, Chandra RP, Saddler JN (2010) The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol Bioeng 105:871–879. doi:10.1002/bit.22626

    CAS  Google Scholar 

  • Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98:2503–2510. doi:10.1016/j.biortech.2006.09.003

    Article  Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72. doi:10.1016/j.jbiotec.2003.09.011

    Article  CAS  Google Scholar 

  • Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005a) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90:473–481. doi:10.1002/bit.20453

    Article  CAS  Google Scholar 

  • Pan X, Xie D, Gilkes N, Gregg D, Saddler J (2005b) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 124:1069–1079. doi:10.1385/ABAB:124:1-3:1069

    Article  Google Scholar 

  • Penttilä PA, Kilpeläinen P, Tolonen L, Suuronen J-, Sixta H, Willför S, Serimaa R (2013) Effects of pressurized hot water extraction on the nanoscale structure of birch sawdust. Cellulose 20:2335–2347. doi:10.1007/s10570-013-0001-9

    Article  Google Scholar 

  • Pielhop T, Studer M, von Rohr PR (2012) Use of carbonium ion scavengers in the pretreatment of spruce wood. 12th European Workshop on Lignocellulosics and Pulp (EWLP), August 27–30, Espoo, Finland, pp 20–23

  • Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K (2011) Inhibition of enzymatic hydrolysis by residual lignins from softwood—study of enzyme binding and inactivation on lignin-rich surface. Biotechnol Bioeng 108:2823–2834. doi:10.1002/bit.23242

    Article  CAS  Google Scholar 

  • Rahikainen JL, Moilanen U, Nurmi-Rantala S, Lappas A, Koivula A, Viikari L, Kruus K (2013) Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases. Bioresour Technol 146:118–125. doi:10.1016/j.biortech.2013.07.069

    Article  CAS  Google Scholar 

  • Ramos LP, Breuil C, Saddler JN (1992) Comparison of steam pretreatment of eucalyptus, aspen, and spruce wood chips and their enzymatic hydrolysis. Appl Biochem Biotechnol 34–35:37–48. doi:10.1007/BF02920532

    Article  Google Scholar 

  • Retsina T, Pylkkanen V (2011) Method for the production of fermentable sugars and cellulose from lignocellulosic material. U S patent US 8030039 granted 4 Oct. 2011. Also patents: US 8038842 granted 11 Oct. 2011; US 8268125 granted 18 Sept. 2012; US 8585863 granted 19 Nov. 2013

  • Selig M, Weiss N, Ji Y (2008) Enzymatic saccharification of lignocellulosic biomass. Technical report NREL/TP-510-42629

  • Shuai L, Yang Q, Zhu JY, Lu FC, Weimer PJ, Ralph J, Pan XJ (2010) Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresour Technol 101:3106–3114. doi:10.1016/j.biortech.2009.12.044

    Article  CAS  Google Scholar 

  • Sklavounos E, Iakovlev M, van Heiningen A (2013) Study on conditioning of so2–ethanol–water spent liquor from spruce chips/softwood biomass for ABE fermentation. Ind Eng Chem Res 52:4351–4359. doi:10.1021/ie303126x

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Technical Report NREL/TP-510-42623

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618

  • Stone JE, Scallan AM, Abrahamson B (1968) Influence of beating on cell wall swelling and internal fibrillation. Svensk Papperstidning 19:687

    Google Scholar 

  • Survase SA, van Heiningen A, Granström T (2012) Continuous bio-catalytic conversion of sugar mixture to acetone–butanol–ethanol by immobilized Clostridium acetobutylicum DSM 792. Appl Microbiol Biotechnol 93:2309–2316. doi:10.1007/s00253-011-3761-x

    Article  CAS  Google Scholar 

  • Várnai A, Siika-aho M, Viikari L (2010) Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microb Technol 46:185–193. doi:10.1016/j.enzmictec.2009.12.013

    Article  Google Scholar 

  • Várnai A, Huikko L, Pere J, Siika-aho M, Viikari L (2011) Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol 102:9096–9104. doi:10.1016/j.biortech.2011.06.059

    Article  Google Scholar 

  • Xue Y, Jameel H, Phillips R, Chang H- (2012) Split addition of enzymes in enzymatic hydrolysis at high solids concentration to increase sugar concentration for bioethanol production. J Ind Eng Chem 18:707–714. doi:10.1016/j.jiec.2011.11.132

    Article  CAS  Google Scholar 

  • Yamamoto M, Iakovlev M, van Heiningen A (2011) Total mass balances of SO2–ethanol–water (SEW) fractionation of forest biomass. Holzforschung 65:559–565. doi:10.1515/HF.2011.098

    Article  CAS  Google Scholar 

  • Yamamoto M, Iakovlev M, van Heiningen A (2014) Kinetics of SO2–ethanol–water (SEW) fractionation of hardwood and softwood biomass. Bioresour Technol 155:307–313. doi:10.1016/j.biortech.2013.12.100

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617. doi:10.1002/bit.20750

    Article  CAS  Google Scholar 

  • Yu Z, Jameel H, Chang H-, Park S (2011) The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresour Technol 102:9083–9089. doi:10.1016/j.biortech.2011.07.001

    Article  CAS  Google Scholar 

  • Zhang Y-P, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824. doi:10.1002/bit.20282

    Article  CAS  Google Scholar 

  • Zhang J, Siika-Aho M, Tenkanen M, Viikari L (2011) The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnol Biofuels 4:60. doi:10.1186/1754-6834-4-60

    Article  CAS  Google Scholar 

  • Zheng Y, Zhang S, Miao S, Su Z, Wang P (2013) Temperature sensitivity of cellulase adsorption on lignin and its impact on enzymatic hydrolysis of lignocellulosic biomass. J Biotechnol 166:135–143. doi:10.1016/j.jbiotec.2013.04.018

    Article  CAS  Google Scholar 

  • Zhou H, Lou H, Yang D, Zhu JY, Qiu X (2013) Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: role of molecular weight and substrate lignin. Ind Eng Chem Res 52:8464–8470. doi:10.1021/ie401085k

    Article  CAS  Google Scholar 

  • Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100:2411–2418. doi:10.1016/j.biortech.2008.10.057

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of Tekes (Finnish Funding Agency for Innovation) and industrial project members (ABB, American Process Inc., Kemira, Neste Oil, Stora Enso, UPM) through the BioRefine program is greatly acknowledged. Thanks to Dr. Paavo Penttilä and Prof. Ritva Serimaa at University of Helsinki for the analysis of crystallinity of cellulose; Dr. Shrikant Survase and Johanna Aura for their help in the analysis of the enzyme properties; Rita Hatakka for the HPAEC analyses and Leena Nolvi for the FSP analysis. Authors also thank Dr. Aniko Varnai and Dr. Jenni Rahikainen for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minna Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, M., Iakovlev, M. & van Heiningen, A. The effect of chemical and physical characteristics of spruce SEW pulps on enzymatic hydrolysis. Cellulose 21, 3395–3407 (2014). https://doi.org/10.1007/s10570-014-0396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0396-y

Keywords

Navigation