Skip to main content
Log in

Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNC) was obtained from bamboo pulp via ultrasonication-assisted FeCl3-catalyzed hydrolysis process, with parameters optimized by response surface methodology. The optimal parameters were reaction temperature: 107 °C, reaction time: 58 min, ultrasonication time: 186 min. The morphological, crystal structural, chemical structural and thermal features of the prepared cellulose nanocrystals were analyzed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), Fourier transfer infrared (FTIR) and thermogravimetric analysis. The results showed that the cellulose nanocrystals formed an interconnected network structure and CNC was rod-like with the length of 100–200 nm and the width of 10–20 nm. XRD result revealed that, compared with cellulose pulp, the crystallinity index of CNC increased from 69.5 to 79.4 %, while the cellulose I crystal structure remained. FTIR analysis demonstrated that CNC had the similar chemical structures to that of cellulose pulp, which indicated that the chemical structures of CNC remained unchanged in the presence of FeCl3-catalyzed hydrolysis process and ultrasonication treatment. Thermogravimetric analysis revealed that the resulting CNC exhibited relatively high thermal stability. The research shows that ultrasonication-assisted FeCl3-catalyzed hydrolysis could be a highly efficient method for preparing CNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues-wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber reinforced composites. J Reinf Plast Compos 24:1259–1268

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    Article  CAS  Google Scholar 

  • Brito BSL, Pereira FV, Putaux JL, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19:1527–1536

    Article  CAS  Google Scholar 

  • Chari MA, Syamasundar K (2005) Polymer (PVP) supported ferric chloride: an efficient and recyclable heterogeneous catalyst for high yield synthesis of 1,5-benzodiazepine derivatives under solvent free conditions and microwave irradiation. Catal Commun 6:67–70

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y (2011) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461

    Article  CAS  Google Scholar 

  • Cherian BM, Leäo AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725

    Article  CAS  Google Scholar 

  • de Campos A, Correa AC, Cannella D, de Morais Teixeira E, Marconcini JM, Dufresne A, Mattoso LH, Cassland P, Sanadi AR (2013) Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500

    Article  Google Scholar 

  • Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997

    Article  CAS  Google Scholar 

  • Dehghani K, Nekahi A, Mirzaie MAM (2010) Optimizing the bake hardening behavior of Al7075 using response surface methodology. Mater Des 31:1768–1775

    Article  CAS  Google Scholar 

  • Dhepe PL, Fukuoka A (2008) Cellulose conversion under heterogeneous catalysis. ChemSusChem 1:969–975

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  Google Scholar 

  • Faria Tischer PCS, Sierakowski MR, Westfahl H Jr, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules 11:1217–1224

    Article  Google Scholar 

  • Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour Technol 100:2259–2264

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Hamad WY, Hu TQ (2010) Structure-process-yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88:392–402

    CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    Article  CAS  Google Scholar 

  • Jahan MS, Saeed A, He Z, Ni Y (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18:451–459

    Article  CAS  Google Scholar 

  • Khattar JIS, Shailza (2009) Optimization of Cd2+ removal by the cyanobacterium Synechocystis pevalekii using the response surface methodology. Process Biochem 44:118–121

    Article  CAS  Google Scholar 

  • Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113

  • Lojewska J, Miskowiec P, Lojewski T, Pronewicz LM (2005) Cellulose oxidative and hydrolysis degradation: in situ FTIR approach. Polym Degrad Stab 88:512–520

    Article  CAS  Google Scholar 

  • Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573

    Article  CAS  Google Scholar 

  • Majumder A, Singh A, Goyal A (2009) Application of response surface methodology for glucan production from Leuconostoc dextranicum and its structural characterization. Carbohydr Polym 75:150–156

    Article  CAS  Google Scholar 

  • Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299

    Article  CAS  Google Scholar 

  • Masson C, Soto J, Bessodes M (2000) Ferric chloride: a new and very efficient catalyst for the Ferrier glycosylation reaction. Synlett 9:1281–1282

    Google Scholar 

  • Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  Google Scholar 

  • Okahisa Y, Abe K, Nogi M, Nakagaito AN, Nakatani T, Yano H (2011) Effects of delignification in the production of plantbased cellulose nanofibers for optically transparent nanocomposites. Compos Sci Technol 71:1342–1347

    Article  CAS  Google Scholar 

  • Pandey JK, Ahn SH, Lee CS, Mohanty AK, Misra M (2010) Recent advances in the application of natural fiber based composites. Macromol Mater Eng 295:975–989

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulphate groups from sulphuric acid hydrolysis on the thermal degradation behaviour of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  Google Scholar 

  • Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98–100

  • Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88:772–779

    Article  CAS  Google Scholar 

  • Sun JX, Sun RC, Sun XF, Su YQ (2004) Fractional and physico-chemical characterisation of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydr Res 339:291–300

    Article  CAS  Google Scholar 

  • Tang LR, Huang B, Ou W, Chen XR, Chen YD (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Bioresour Technol 102:10973–10977

    Article  CAS  Google Scholar 

  • Torvinen K, Sievänen J, Hjelt T, Hellén E (2012) Smooth and flexible filler-nanocellulose composite structure for printed electronics applications. Cellulose 19:821–829

    Article  CAS  Google Scholar 

  • Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35:92–97

    Article  CAS  Google Scholar 

  • Yang Q, Pan X, Huang F, Li K (2011) Synthesis and characterization of cellulose fibers grafted with hyperbranched poly (3-methyl-3-oxetanemethanol). Cellulose 18:1611–1621

    Article  CAS  Google Scholar 

  • Zaman M, Liu H, Xiao H, Chibante F, Ni Y (2012) Hydrophilic modification of polyester fabric by applying nanocrystalline cellulose containing surface finish. Carbohydr Polym 91:560–567

    Article  Google Scholar 

  • Zhang LP, Tang HW, Qu P, Li S, Qin Z, Sun SQ (2011) Spectral property of one dimensional rodlike nano cellulose. Spectrosc Spectr Anal 31:1097–1100

    CAS  Google Scholar 

  • Zhao HP, Feng XQ, Gao HJ (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:073112

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the generous financial support of the National Natural Science Foundation of China (Grant Nos. 31170520, 31370560) and the Project of Advanced Forestry Science and Technology (Grant No. 2014-4-30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Tang, L., Lin, F. et al. Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis. Cellulose 21, 3497–3506 (2014). https://doi.org/10.1007/s10570-014-0376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0376-2

Keywords

Navigation