Skip to main content
Log in

Cellulose Iβ investigated by IR-spectroscopy at low temperatures

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Highly crystalline oriented Halocynthia roretzi cellulose Iβ films were investigated by IR-spectroscopy between −180 and +10 °C. Changes in the IR-spectra induced by temperature were compared to published changes induced by mechanical stretching. This made it possible to conclude that frequency shifts in the O–H stretching region of the IR-spectra due to temperature were not predominantly an indirect effect of thermal expansion leading to greater O–O distances, but were due directly to the effect of temperature on the O–H···O hydrogen bonds. Temperature induced frequency shifts of C–H stretching bands were consistent with the presence of weak inter-sheet C–H···O bonds. Furthermore, no phase transition in cellulose Iβ was found between −180 and +10 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal V, Huber GW, Conner WC, Auerbach SM (2011) Simulating infrared spectra and hydrogen bonding in cellulose I beta at elevated temperatures J Chem Phys 135 doi:10.1063/1.3646306

  • Altaner CM, Thomas LH, Fernandes AN, Jarvis MC (2014) How cellulose stretches: synergism between covalent and hydrogen bonding. Biomacromolecules 15:791–798. doi:10.1021/bm401616n

    Article  CAS  Google Scholar 

  • Desiraju GR, Steiner T (1999) The weak hydrogen bond: in structural chemistry and biology. IUCr monographs on crystallography/International Union of Crystallography. Oxford University Press, Oxford

  • Diaz JA, Wu XW, Martini A, Youngblood JP, Moon RJ (2013) Thermal expansion of self-organized and shear-oriented cellulose nanocrystal films. Biomacromolecules 14:2900–2908. doi:10.1021/bm400794e

    Article  CAS  Google Scholar 

  • Finch JN, Lippincott ER (1957) Hydrogen bond systems: temperature dependence of OH frequency shifts and OH band intensities. J Phys Chem 61:894–902. doi:10.1021/j150553a011

    Article  CAS  Google Scholar 

  • French A, Concha M, Dowd M, Stevens E (2014) Electron (charge) density studies of cellulose models. Cellulose 21:1051–1063. doi:10.1007/s10570-013-0042-0

    Article  CAS  Google Scholar 

  • Glasser WG et al (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19:589–598. doi:10.1007/s10570-012-9691-7

    Article  CAS  Google Scholar 

  • Hatakeyama H, Nagasaki C, Yurugi T (1976) Relation of certain infrared bands to conformational changes of cellulose and cellulose oligosaccharides. Carbohydr Res 48:149–158. doi:10.1016/S0008-6215(00)83211-5

    Article  CAS  Google Scholar 

  • Hidaka H, Kim UJ, Wada M (2010) Synchrotron X-ray fiber diffraction study on the thermal expansion behavior of cellulose crystals in tension wood of Japanese poplar in the low-temperature region. Holzforschung 64:167–171. doi:10.1515/hf.2010.028

    Article  CAS  Google Scholar 

  • Hinterstoisser B, Akerholm M, Salmén L (2003) Load distribution in native cellulose. Biomacromolecules 4:1232–1237. doi:10.1021/bm030017k

    Article  CAS  Google Scholar 

  • Horikawa Y, Itoh T, Sugiyama J (2006) Preferential uniplanar orientation of cellulose microfibrils reinvestigated by the FTIR technique. Cellulose 13:309–316. doi:10.1007/s10570-005-9037-9

    Article  CAS  Google Scholar 

  • Ivanova NV, Korolik EV, Zhbankov RG, Insarova NI (1983) Low-temperature IR spectra of cellulose. Translated from Zhurnal Prikladnoi Spektroskopii 38(6):937–940, June, 1983 38:676–678. doi:10.1007/BF00666708

  • Jeffrey GA (1997) An introduction to hydrogen bonding: topics in physical chemistry. Oxford University Press, New York

    Google Scholar 

  • Joseph J, Jemmis ED (2007) Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Am Chem Soc 129:4620–4632. doi:10.1021/ja067545z

    Article  CAS  Google Scholar 

  • Katon JE, Miller JT, Bentley FF (1969) Infrared spectra of carbohydrates at sub-ambient temperatures. Carbohydr Res 10:505–516. doi:10.1016/S0008-6215(00)80119-6

    Article  CAS  Google Scholar 

  • Kokot S, Czarnik-Matusewicz B, Ozaki Y (2002) Two-dimensional correlation spectroscopy and principal component analysis studies of temperature-dependent IR spectra of cotton-cellulose. Biopolymers 67:456–469

    Article  CAS  Google Scholar 

  • Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose I-beta and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12:551–562. doi:10.1007/s10570-005-9006-3

    Article  CAS  Google Scholar 

  • Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117:6681–6692. doi:10.1021/jp402998s

    Article  CAS  Google Scholar 

  • Lutz ETG, van der Maas JH (1994) Hydrogen bonds in crystalline carbohydrates: a variable-temperature FT-IR study. J Mol Struct 324:123–132. doi:10.1016/0022-2860(94)08233-2

    Article  CAS  Google Scholar 

  • Lutz ETG, Veldhuizen YSJ, Kanters JA, van der Maas JH, Baran J, Ratajczak H (1992) A variable low-temperature Ft-Ir study of crystalline beta-D-fructopyranose and deuterated analogs. J Mol Struct 270:381–392

    Article  CAS  Google Scholar 

  • Maréchal Y, Chanzy H (2000) The hydrogen bond network in I-beta cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196. doi:10.1016/S0022-2860(99)00389-0

    Article  Google Scholar 

  • McCall ER, Morris NM, Tripp VW, O’Connor RT (1971) Low temperature infrared absorption spectra of cellulosics. Appl Spectrosc 25:196–200

    Article  CAS  Google Scholar 

  • Michell AJ (1970) Low-temperature infrared spectra of carbohydrates. Aust J Chem 23:833–838

    Article  CAS  Google Scholar 

  • Müller M, Burghammer M, Sugiyama J (2006) Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung 60:474–479. doi:10.1515/HF.2006.078

    Article  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I(beta) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. doi:10.1021/ja0257319

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose i-beta. Biomacromolecules 9:3133–3140. doi:10.1021/Bm800726v

    Article  CAS  Google Scholar 

  • Parthasarathi R, Bellesia G, Chundawat SPS, Dale BE, Langan P, Gnanakaran S (2011) Insights into hydrogen bonding and stacking interactions in cellulose. J Phys Chem A 115:14191–14202. doi:10.1021/Jp203620x

    Article  CAS  Google Scholar 

  • R Core Team (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Šturcová A, His I, Wess TJ, Cameron G, Jarvis MC (2003) Polarized vibrational spectroscopy of fiber polymers: hydrogen bonding in cellulose II. Biomacromolecules 4:1589–1595

    Article  Google Scholar 

  • Šturcová A, Eichhorn SJ, Jarvis MC (2006) Vibrational spectroscopy of biopolymers under mechanical stress: processing cellulose spectra using bandshift difference integrals. Biomacromolecules 7:2688–2691. doi:10.1021/bm060457m

    Article  Google Scholar 

  • Wada M (2002) Lateral thermal expansion of cellulose I-beta and IIII polymorphs. J Polym Sci Pt B Polym Phys 40:1095–1102

    Article  CAS  Google Scholar 

  • Wada M, Hori R, Kim UJ, Sasaki S (2010) X-ray diffraction study on the thermal expansion behavior of cellulose I beta and its high-temperature phase. Polym Degrad Stab 95:1330–1334. doi:10.1016/j.polymdegradstab.2010.01.034

    Article  CAS  Google Scholar 

  • Watanabe A, Morita S, Ozaki Y (2006a) Study on temperature-dependent changes in hydrogen bonds in cellulose I beta by infrared spectroscopy with perturbation–correlation moving-window two-dimensional correlation spectroscopy. Biomacromolecules 7:3164–3170. doi:10.1021/bm0603591

    Article  CAS  Google Scholar 

  • Watanabe A, Morita S, Ozaki Y (2006b) Temperature-dependent structural changes in hydrogen bonds in microcrystalline cellulose studied by infrared and near-infrared spectroscopy with perturbation–correlation moving-window two-dimensional correlation analysis. Appl Spectrosc 60:611–618

    Article  CAS  Google Scholar 

  • Zhang QO, Bulone V, Agren H, Tu YQ (2011) A molecular dynamics study of the thermal response of crystalline cellulose I beta. Cellulose 18:207–221. doi:10.1007/s10570-010-9491-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by BBSRC (Biotechnology and Biological Sciences Research Council) and SHEFC (Scottish Higher Education Funding Council). We like to thank Y. Nishiyama (CERMAV) for discussing aspects of the manuscript with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens M. Altaner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altaner, C.M., Horikawa, Y., Sugiyama, J. et al. Cellulose Iβ investigated by IR-spectroscopy at low temperatures. Cellulose 21, 3171–3179 (2014). https://doi.org/10.1007/s10570-014-0360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0360-x

Keywords

Navigation