Skip to main content
Log in

Atomic partial charges and one Lennard-Jones parameter crucial to model cellulose allomorphs

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The influence of the non-bonded parameters, i.e., Lennard-Jones and the partial atomic charges, on the predicted unit cell dimensions of different allomorphs of cellulose were studied in the framework of the GROMOS force field. Systematic variation of partial atomic charges revealed the particular importance of charge distribution at the proximity of glycosidic linkage to the monoclinic angles. Furthermore, the unit cell parameters were better predicted when the repulsive term of the united atom CH1 (carbon atoms bearing one hydrogen) was optimized. The a-axis of cellulose Iβ was over estimated by more than 7 and 8.3 % in GROMOS-53A6 and GROMOS-56Acarbo respectively, but gave prediction within 0.2 % from experimental value, i.e. within experimental accuracy, when the CH1 repulsion term was optimized and CHARMM charge set was imported. At the same time, the average deviation from experimental values of the lattice parameters of four allomorphs was improved from 2.36 to 1.18 % for GROMOS-53a6 and from 2.53 to 1.75 % for GROMOS-56Acarbo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JRJ (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145

    Article  Google Scholar 

  • Bučko T, Hafner J, Lebègue S, Ángyán JG (2010) Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J Phys Chem A 114:11814–11824

    Article  Google Scholar 

  • Bučko T, Tunega D, Ángyán JG, Hafner J (2011) Ab initio study of structure and interconversion of native cellulose phases. J Phys Chem A 115:10097–10105

    Article  Google Scholar 

  • Bussi G, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:14101–14107

    Article  Google Scholar 

  • Chen P, Nishiyama Y, Mazeau K (2012) Torsional entropy at the origin of the reversible temperature-induced phase transition of cellulose. Macromolecules 45(1):362–368

    Article  CAS  Google Scholar 

  • Chen P, Nishiyama Y, Putaux J-L, Mazeau K (2014) Diversity of potential hydrogen bonds in cellulose I revealed by molecular dynamics simulation. Cellulose 21:897–908

    Article  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Diddens I, Murphy B, Kirsch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759

    Article  CAS  Google Scholar 

  • Dunfield LG, Burgess AW, Scheraga HA (1978) Energy parameters in polypeptides 8: empirical potential energy algorithm for the conformational analysis of large molecules. J Phys Chem 82(24):2609–2616

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307

    Article  CAS  Google Scholar 

  • Foley BL, Tessier MB, Woods RJ (2011) Carbohydrate force fields. Wiley Interdiscip. Rev Comput Mol Sci 2:652–697

  • Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity: a rapid access to atomic charges. Tetrahedron 36(22):3219–3228

    Article  CAS  Google Scholar 

  • Guvench O, Hatcher E, Venable RM, Pastor RW, MacKerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5(9):2353–2370

    Article  CAS  Google Scholar 

  • Hadden JA, French AD, Woods R (2013) Unraveling cellulose microfibrils: a twisted tale. Biopolymers 99(10):746–756

    Article  CAS  Google Scholar 

  • Hansen HS, Hünenberger PH (2011) A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. J Comput Chem 32(6):998–1032

    Article  CAS  Google Scholar 

  • Hess B, Bekker H, Berendsen HC, Fraaije JMGE (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel V, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  • Hockney RW, Goel SP (1974) Quiet high-resolution computer models of a plasma. J Comput Phys 14:148–158

    Article  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  • Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field carbohydrates. J Comput Chem 29(4):622–655

    Article  CAS  Google Scholar 

  • Koehler JE, Saenger W, van Gunsteren WF (1987) A molecular dynamics simulation of crystalline α-cyclodextrin hexahydrate. J Eur Biophys 15:197–210

    Article  CAS  Google Scholar 

  • Kroon-Batenburg LMJ, Kroon J (1997) The crystal and molecular structures of cellulose I and II. Glycoconj J 14:677–690

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2(2):410–416

    Article  CAS  Google Scholar 

  • Lins RD, Hünenberger PH (2005) A new GROMOS force field for hexopyranose-based carbohydrates. J Comput Chem 26(13):1400–1412

    Article  CAS  Google Scholar 

  • Mackerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25(13):1584–1604

    Article  CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341(1):138–152

    Article  CAS  Google Scholar 

  • Matthews JF, Beckham GT, Bergenstrahle M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose Iβ simulations with three carbohydrate force fields. J Chem Theory Comput 8:735–748

    Article  CAS  Google Scholar 

  • Mazeau K (2005) Structural micro-heterogeneities of crystalline Iβ-cellulose. Cellulose 12:339–349

    Article  CAS  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19:319–336

    Article  CAS  Google Scholar 

  • Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676

    Article  CAS  Google Scholar 

  • Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218

    Article  CAS  Google Scholar 

  • Taylor JB, Rowlinson JS (1955) The thermodynamic properties of aqueous solutions of glucose. Trans Faraday Soc 51:1183–1192

    Article  CAS  Google Scholar 

  • Van Gunsteren WF, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke DP, Glättli A, Hünenberger PH, Kastenholz MA, Oostenbrink C, Schenk M, Trzesniak D, van der Vegt NFA, Yu HB (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed 45(25):4064–4092

    Article  Google Scholar 

  • Viëtor RJ, Mazeau K, Lakin M, Pérez S (2000) A priori crystal structure prediction of native celluloses. Biopolymers 54(5):342–354

    Article  Google Scholar 

  • Wada M (2002) Lateral thermal expansion of cellulose Iβ and IIII polymorphs. J Polym Sci Part B 40:1095–1102

    Article  CAS  Google Scholar 

  • Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37(23):8548–8555

    Article  CAS  Google Scholar 

  • Zhang Q, Bulone V, Ågren H, Tu Y (2011) A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 18:207–221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P. C. received scholarship from the China scholarship Council. The authors thank the French Agence National de Recherche for funding (ANR-08-BLANC0307-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiharu Nishiyama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 515 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Nishiyama, Y. & Mazeau, K. Atomic partial charges and one Lennard-Jones parameter crucial to model cellulose allomorphs. Cellulose 21, 2207–2217 (2014). https://doi.org/10.1007/s10570-014-0279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0279-2

Keywords

Navigation