Skip to main content
Log in

Viscosity measurements of dilute aqueous suspensions of cellulose nanocrystals using a rolling ball viscometer

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (NCC) are produced through acidic hydrolysis and mechanical disintegration of cellulose. Plans to produce NCC on an industrial scale point to the need for an efficient method to characterize its suspensions. Viscosity is a bulk property that could be used for this characterization since it accurately describes the suspension and the inherent properties of the nanocrystals. Our objective was to develop a convenient way to characterize diluted aqueous NCC suspensions without the need of complex instrumentation. The viscosity of dilute suspensions was measured with an automated rolling ball viscometer, which requires only a small amount of sample. The feasibility of the proposed procedure was confirmed by using dextran solutions as standards. The NCC suspensions were characterized by their intrinsic viscosity [η], which is directly related to the hydrodynamic dimensions of the nanocrystals. The data obtained were analyzed using the equations established by Huggins and by Fedors. Fedors’ approach gave more accurate results, leading to a value of 213 mL g−1 for the intrinsic viscosity, [η]. The non-Newtonian character of NCC suspensions at increasing concentrations was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier JL (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80(3):677–686

    Article  CAS  Google Scholar 

  • AMVn automated viscometer (2008) Instruction manual. Anton Paar, Austria

  • Antoniou E, Buitrago CF, Tsianou M, Alexandridis P (2010) Solvent effects on polysaccharide conformation. Carbohydr Polym 79(2):380–390

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A-Physicochem Eng Asp 142(1):75–82

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okana T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45(3):258–261

    Article  CAS  Google Scholar 

  • Bagchi A, Chhabra RP (1991) Rolling ball viscometry for Newtonian and power law liquids. Chem Eng Process 30(1):11–13

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054

    Article  CAS  Google Scholar 

  • Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33(16):6011–6016

    Article  CAS  Google Scholar 

  • Boluk Y, Lahiji R, Zhao LY, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A-Physicochem Eng Asp 377(1–3):297–303

    Article  CAS  Google Scholar 

  • Chhabra R, Richardson JF (2008) Non-Newtonian flow and applied rheology engineering applications. Butterworth-Heinemann/Elsevier, Amsterdam

    Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082

    Article  CAS  Google Scholar 

  • Fedors RF (1979) An equation suitable for describing the viscosity of dilute to moderately concentrated polymer solutions. Polymer 20(2):225–228

    Article  CAS  Google Scholar 

  • Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10(5):1188–1194

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11):2238–2244

    Article  CAS  Google Scholar 

  • Intrinsic viscosity, molar mass, and K value of polymers in dilute solution (2008) Application note. Anton Paar, Austria

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Kulicke W-M (2004) Viscosimetry of polymers and polyelectrolytes. Springer, Berlin

    Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15(3):425–433

    Article  CAS  Google Scholar 

  • Lima MMD, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787

    Article  Google Scholar 

  • Ma J, Liang B, Cui P, Dai H, Huang R (2003) Dilute solution properties of hydrophobically associating polyacrylamide: fitted by different equations. Polymer 44(4):1281–1286

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    Article  CAS  Google Scholar 

  • Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites—phase separation and magnetic field orientation. Liq Cryst 16(1):127–134

    Article  CAS  Google Scholar 

  • Schoff CK, Kamarchik P (2005) Rheology and rheological measurements. In: Kirk-Othmer Encyclopedia of Chemical Technology. Wiley, New York. doi:10.1002/0471238961.1808051519030815.a01.pub2

  • Šesták J, Ambros F (1973) On the use of the rolling-ball viscometer for the measurement of rheological parameters of power law fluids. Rheol Acta 12(1):70–76

    Article  Google Scholar 

  • Tirtaatmadja V, Dunstan DE, Roger DV (2001) Rheology of dextran solutions. J Nonnewton Fluid Mech 97(2–3):295–301

    Article  CAS  Google Scholar 

  • Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998

    Article  Google Scholar 

  • van Voorst C, van Duijn C (1976) An improved and simplified design for a Hoeppler-type (rolling ball) microviscometer. J Phys E: Sci Instrum 9:613–615

    Article  Google Scholar 

Download references

Acknowledgments

We thank NSERC for support, and FPInnovations for a sample of NCC aqueous suspension. Thanks to Dr. Elisabeth Kloser for conductometric titration of the NCC suspension.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek G. Gray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Labrada, E., Gray, D.G. Viscosity measurements of dilute aqueous suspensions of cellulose nanocrystals using a rolling ball viscometer. Cellulose 19, 1557–1565 (2012). https://doi.org/10.1007/s10570-012-9746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9746-9

Keywords

Navigation