Skip to main content
Log in

Estimation of aspect ratio of cellulose nanocrystals by viscosity measurement: influence of surface charge density and NaCl concentration

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNCs) with similar size and various surface charge densities were prepared by sulfuric acid hydrolysis and NaOH desulfation. The influence of surface charge density and NaCl concentration on the intrinsic viscosity of CNC suspensions and predicted aspect ratio were investigated by Ubbelohde viscometer. With decreased CNC surface charge density, the intrinsic viscosity initially decreased due to the electric double layers on the CNC surface and subsequently increased due to CNC aggregation. To screen electroviscous effect, NaCl was added into CNC suspensions. With increased NaCl concentration, the intrinsic viscosity of CNC suspensions first decreased and then increased. The aspect ratios of CNCs predicted by Batchelor equation from the minimum intrinsic viscosity were consistent with that measured by transmission electron microscopy. Suspensions of CNCs with higher surface charge density needed less NaCl to obtain minimum intrinsic viscosity. The NaCl content that should be added to the suspension to predict the actual physical aspect ratio of CNC can be estimated by Debye–Hückel theory, assuming that the Debye length is equal to the CNC diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloid Surf A 142:75–82

    Article  CAS  Google Scholar 

  • Bagheriasl D, Carreau PJ, Riedl B, Dubois C, Hamad WY (2016) Shear rheology of polylactide (PLA)-cellulose nanocrystal (CNC) nanocomposites. Cellulose 23:1885–1897

    Article  CAS  Google Scholar 

  • Batchelor G (1970) Slender-body theory for particles of arbitrary cross-section in Stokes flow. J Fluid Mech 44:419–440

    Article  Google Scholar 

  • Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33:6011–6016

    Article  CAS  Google Scholar 

  • Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloid Surf A 377:297–303

    Article  CAS  Google Scholar 

  • Capron I, Cathala B (2013) Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromol 14:291–296

    Article  CAS  Google Scholar 

  • Chau M et al (2015) Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromol 16:2455–2462

    Article  CAS  Google Scholar 

  • Chen C, Yang C, Li S, Li D (2015) A three-dimensionally chitin nanofiber/carbon nanotube hydrogel network for foldable conductive paper. Carbohydr Polym 134:309–313

    Article  CAS  Google Scholar 

  • Csoka L, Hoeger IC, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN (2012) Piezoelectric effect of cellulose nanocrystals thin films. Acs Macro Lett 1:867–870

    Article  CAS  Google Scholar 

  • de Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563

    Article  Google Scholar 

  • Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15:2327–2346

    Article  CAS  Google Scholar 

  • Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Dufresne A, Belgacem MN (2013) Cellulose-reinforced composites: from micro-to nanoscale. Polimeros-Ciencia E Tecnol 23:277–286

    CAS  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315

    Article  CAS  Google Scholar 

  • Emami Z, Meng QK, Pircheraghi G, Manas-Zloczower I (2015) Use of surfactants in cellulose nanowhisker/epoxy nanocomposites: effect on filler dispersion and system properties. Cellulose 22:3161–3176

    Article  CAS  Google Scholar 

  • Espino-Perez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154

    Article  CAS  Google Scholar 

  • Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355

    Article  CAS  Google Scholar 

  • Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Supplement. Polym Eng Sci 14:472

    Article  CAS  Google Scholar 

  • Gong G, Mathew AP, Oksman K (2011) Strong aqueous gels of cellulose nanofibers and nanowhiskers isolated from softwood flour. Tappi J 10:7–14

    CAS  Google Scholar 

  • Gray DG (2008) Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose 15:297–301

    Article  CAS  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hassanabadi HM, Alemdar A, Rodrigue D (2015) Polypropylene reinforced with nanocrystalline cellulose: coupling agent optimization. J Appl Polym Sci 132:42438

    Article  Google Scholar 

  • Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453

    Article  CAS  Google Scholar 

  • Iwamoto S, Lee SH, Endo T (2013) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46:73–76

    Article  Google Scholar 

  • Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969

    Article  CAS  Google Scholar 

  • Jowkarderis L, van de Ven TGM (2014) Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils. Cellulose 21:2511–2517

    Article  CAS  Google Scholar 

  • Kelly JA, Giese M, Shopsowitz KE, Hamad WY, MacLachlan MJ (2014) The development of chiral nematic mesoporous materials. Acc Chem Res 47:1088–1096

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angewandte Chemie-Int Edn 50:5438–5466

    Article  CAS  Google Scholar 

  • Larson RG (1998) The structure and rheology of complex fluid. Oxford University Press, New York

    Google Scholar 

  • Li J, Revol JF, Marchessault RH (1996) Rheological properties of aqueous suspensions of chitin crystallites. J Colloid Interface Sci 183:365–373

    Article  CAS  Google Scholar 

  • Li MC, Wu Q, Song K, Lee S, Yan Q, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3:821–832

    Article  CAS  Google Scholar 

  • Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393

    Article  CAS  Google Scholar 

  • Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101:5685–5692

    Article  CAS  Google Scholar 

  • McKee JR, Hietala S, Seitsonen J, Laine J, Kontturi E, Ikkala O (2014) Thermoresponsive nanocellulose hydrogels with tunable mechanical properties. Acs Macro Lett 3:266–270

    Article  CAS  Google Scholar 

  • Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, Cambridge

    Google Scholar 

  • Mills P (1985) Non-Newtonian behaviour of flocculated suspensions. J Phys Lett 46:301–309

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784

    Article  CAS  Google Scholar 

  • Parra-Vasquez ANG et al (2007) Simple length determination of single-walled carbon nanotubes by viscosity measurements in dilute suspensions. Macromolecules 40:4043–4047

    Article  CAS  Google Scholar 

  • Podsiadlo P et al (2007) Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir 23:7901–7906

    Article  CAS  Google Scholar 

  • Rezaei A, Nasirpour A, Fathi M (2015) Application of cellulosic nanofibers in food science using electrospinning and its potential risk. Compreh Rev Food Sci Food Saf 14:269–284

    Article  CAS  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28:17124–17133

    Article  CAS  Google Scholar 

  • Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:U422–U426

    Article  Google Scholar 

  • Tang L, Weder C (2010) Cellulose whisker/epoxy resin nanocomposites. ACS Appl Mater Interfaces 2:1073–1080

    Article  CAS  Google Scholar 

  • Ubbelohde L (1937) Arrangement for testing the viscosity of liquid materials. US Pat 2091896 A

  • Wierenga AM, Philipse AP (1996) Low-shear viscosities of dilute dispersions of colloidal rodlike silica particles in cyclohexane. J Colloid Interface Sci 180:360–370

    Article  CAS  Google Scholar 

  • Wu Q, Henriksson M, Liu X, Berglund LA (2007) A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromol 8:3687–3692

    Article  CAS  Google Scholar 

  • Wu Q, Meng Y, Concha K, Wang S, Li Y, Ma L, Fu S (2013) Influence of temperature and humidity on nano-mechanical properties of cellulose nanocrystal films made from switchgrass and cotton. Ind Crop Prod 48:28–35

    Article  CAS  Google Scholar 

  • Wu Q, Meng Y, Wang S, Li Y, Fu S, Ma L, Harper D (2014) Rheological behavior of cellulose nanocrystal suspension: influence of concentration and aspect ratio. J Appl Polym Sci 131:40525

    Google Scholar 

  • Yang J, Han C-R XuF, R-C Sun (2014) Simple approach to reinforce hydrogels with cellulose nanocrystals. Nanoscale 6:5934–5943

    Article  CAS  Google Scholar 

  • Yang X, Shi K, Zhitomirsky I, Cranston ED (2015) Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv Mater 27:6104–6109

    Article  CAS  Google Scholar 

  • Yang J, Zhang E, Li X, Zhang Y, Qu J, Yu Z-Z (2016) Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98:50–57

    Article  CAS  Google Scholar 

  • Zheng Q, Cai Z, Ma Z, Gong S (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7:3263–3271

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Special Fund for Forest Scientific Research in the Public Welfare (201504603), Project of National Natural Science Foundation of China (21404092), Zhejiang Provincial Natural Science Foundation of China (No. LQ14C160004), Program for key Science and Technology Team of Zhejiang Province (2013TD17), and Tennessee Experimental Station Project #TEN00422.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Li or Siqun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Li, X., Fu, S. et al. Estimation of aspect ratio of cellulose nanocrystals by viscosity measurement: influence of surface charge density and NaCl concentration. Cellulose 24, 3255–3264 (2017). https://doi.org/10.1007/s10570-017-1341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1341-7

Keywords

Navigation