Skip to main content
Log in

On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA) nanocomposites were prepared using cellulose nanowhiskers (CNW) as a reinforcing element in order to asses the value of this filler to reduce the gas and vapour permeability of the biopolyester matrix. The nanocomposites were prepared by incorporating 1, 2, 3 and 5 wt% of the CNW into the PLA matrix by a chloroform solution casting method. The morphology, thermal and mechanical behaviour and permeability of the films were investigated. The CNW prepared by acid hydrolysis of highly purified alpha cellulose microfibers, resulted in nanofibers of 60–160 nm in length and of 10–20 nm in thickness. The results indicated that the nanofiller was well dispersed in the PLA matrix, did not impair the thermal stability of this but induced the formation of some crystallinity, most likely transcrystallinity. CNW prepared by freeze drying exhibited in the nanocomposites better morphology and properties than their solvent exchanged counterparts. Interestingly, the water permeability of nanocomposites of PLA decreased with the addition of CNW prepared by freeze drying by up to 82% and the oxygen permeability by up to 90%. Optimum barrier enhancement was found for composites containing loadings of CNW below 3 wt%. Typical modelling of barrier and mechanical properties failed to describe the behaviour of the composites and appropriate discussion regarding this aspect was also carried out. From the results, CNW exhibit novel significant potential in coatings, membranes and food agrobased packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Angle’s MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposites: 2. Mechanical behavior. Macromolecules 34(9):2921–2931

    Article  Google Scholar 

  • Auras R, Kale G, Singh SP (2006) Degradation of commercial biodegradable packages under real composting and ambient exposure conditions. J Environ Polym Degr 14(3):317–334

    Article  Google Scholar 

  • Ayuk JE, Mathew AP, Oksman K (2009) The effect of plasticizer and cellulose nanowhisker content on the dispersion and properties of cellulose acetate butyrate nanocomposites. J Appl Polym Sci 114:2723–2730

    Article  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  • Bastiolo C, Bellotti V, Del Tredici GF, Lombi R, Montino A, Ponti R (1992) Int Pat Appl WO92/19680

  • Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in mcl-PHAs/cellulose whiskers composites. Macromolecules 32(22):7396–7401

    Article  CAS  Google Scholar 

  • Favier V (1995) Ph.D. Thesis, properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated. Joseph Fourier University, Grenoble, France

  • Fricke HA (1924) Mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Phys Rev 24:575

    Article  CAS  Google Scholar 

  • Ganster J, Fink HP (1999) Physical constants of cellulose. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook, 4th edn, vol 1. Wiley, USA

    Google Scholar 

  • Hajji P, Cavaille JY, Favier V, Gauthier C, Vigier G (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17(4):612–619

    Article  CAS  Google Scholar 

  • Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behaviour. Polym Compos 17:604–611

    Article  CAS  Google Scholar 

  • Jeffrey R, Capadona KS, Trittschuh S, Scott S, Stuart JR, Weder C (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10:712–716

    Article  Google Scholar 

  • Jiang L, Morelius E, Zhang J, Wolcott M (2008) Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J Compos Mater 42:24

    Google Scholar 

  • Koening MF, Huang SJ (1995) Biodegradable blends and composites of polycaprolactone and starch derivatives. Polymer 36:1877

    Article  Google Scholar 

  • Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165

    Article  CAS  Google Scholar 

  • Lagaron JM, Gimenez E, Catala R, Gavara R (2003) Mechanisms of moisture sorption in barrier polymers used in food packaging: amorphous polyamide vs. high barrier ethylene-vinyl alcohol copolymer studied by vibrational spectroscopy. Macromol Chem Phys 204(4):704–713

    Article  CAS  Google Scholar 

  • Lagaron JM, Catalá R, Gavara R (2004) Structural characteristics defining high barrier polymeric materials. Mater Sci Technol 20(1):1–7

    Article  CAS  Google Scholar 

  • Liu X, Dever M, Fair N, Benson RS (1997) Thermal and mechanical properties of poly(lactic Acid) and poly(ethylene/butylene Succinate) Blends. J Environ Polym Degrad 5:4

    Google Scholar 

  • López-Rubio A, Lagaron JM, Ankerfors M, Lindström T, Nordqvist D, Mattozzi A, Hedenqvist MS (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68:718–727

    Article  Google Scholar 

  • Luo JJ, Daniel IM (2003) Characterization and modelling of mechanical behaviour of polymer/clay nanocomposites. Compos Sci Technol 63:1607–1616

    Article  CAS  Google Scholar 

  • Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633

    Article  CAS  Google Scholar 

  • Maxwell JC (1891) Electricity and magnetism, 3rd edn. Dover, New York

    Google Scholar 

  • Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone). Macromolecules 35(6):2190–2199

    Article  CAS  Google Scholar 

  • Nielsen LW (1967) Models for the permeability of filled polymer systems. J Macromol Sci 929–942

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  Google Scholar 

  • Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784

    Article  CAS  Google Scholar 

  • Park ES, Kim MN, Yoon JSJ (2002) Grafting of polycaprolactone onto poly(ethylene-co-vinyl alcohol) and application to polyethylene-based bioerodable blends. Polym Sci Part B Polym Phys 40:2561

    Article  CAS  Google Scholar 

  • Paul DR, Bucknall CB (2000) Polymer blends, vol 2 Performance

  • Petersen L, Nielsen PV, Olsen MB (2001) Physical and mechanical properties of biobased materials. Starch 53(8):356

    Article  CAS  Google Scholar 

  • Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187–2196

    Article  CAS  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544

    Article  CAS  Google Scholar 

  • Podsiadlo P, Choi S, Shim B, Lee J, Cussihy M, Kotov N (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6:2914–2918

    Article  CAS  Google Scholar 

  • Rhim JW, Hong SI, Ha CS (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. Food Sci Technol 42:612–617

    CAS  Google Scholar 

  • Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498

    Article  CAS  Google Scholar 

  • Sanchez-Garcia MD, Gimenez E, Lagaron JM (2007) Comparative barrier performance of novel PET nanocomposites with biopolyester nanocomposites of interest in packaging food applications. J Plastic Film Sheet 23:133–148

    Article  CAS  Google Scholar 

  • Sanchez-Garcia MD, Gimenez E, Gimenez E, Lagaron JM (2008a) Development and characterization of novel nanobiocomposites of bacterial poly(3-hydroxybutirate), layered silicates and poly(ε-caprolactone). J Appl Polym Sci 108:2787–2801

    Article  CAS  Google Scholar 

  • Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008b) Mophology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71:235–244

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432

    Article  CAS  Google Scholar 

  • Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  CAS  Google Scholar 

  • Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464

    Article  CAS  Google Scholar 

  • Tsahiro K, Kobayaski M (1991) Theorical evaluation of three-dimesional elastic constant of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526

    Article  Google Scholar 

  • Tsuji H, Yamada TJ (2003) Blends of aliphatic polyesters. VIII. Effects of poly(L-lactide-co-ε- caprolactone) on enzymatic hydrolysis of poly(L-lactide), poly(ε- caprolactone), and their blend films. Appl Polym Sci 87:412

    Article  CAS  Google Scholar 

  • Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103

    Article  Google Scholar 

  • Wu YP, Jia QX, Yu DS, Zhang LQ (2004) Modelling young’s modulus of rubber-clay nanocomposites using composites theories. Polym Test 23:903–909

    Article  CAS  Google Scholar 

  • Zhang G, Yan DJ (2003) Crystallization kinetics and melting behavior of nylon 10, 10 in nylon 10, 10-montmorillonite nanocomposites. Appl Polym Sci 88:2181–2188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the MICINN projects MAT2009-14533-C02-01 and EUI2008-00182 for financial support. Dr. E. Gimenez from the UPV, Valencia is acknowledged for support with the mechanical testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Lagaron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez-Garcia, M.D., Lagaron, J.M. On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17, 987–1004 (2010). https://doi.org/10.1007/s10570-010-9430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9430-x

Keywords

Navigation