Skip to main content
Log in

Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanofibrillated cellulose (NFC)-Norway spruce O-acetyl-galactoglucomannan (GGM) composite films were coated either with a novel succinic ester of GGM or with native GGM. NFC films were made for reference. The succinic ester of GGM was synthesised at low (GGM-Su1) and high (GGM-Su2) degree of substitution to obtain different level of water repellence. GGM and its succinic esters had good affinity with NFC substrate. This made it possible to implement the barrier functionality on the NFC network with the adequate mechanical properties. The coatings further enhanced the already excellent oxygen permeability properties, achieving 0.1 [(cm3 µm)(m2 kPa d)] as the lowest value with the NFC-GGM film double-coated with GGM-Su2. The films demonstrated pronounced stiffness by adding GGM to the NFC, as well as coating of GGM-Su2 on the NFC-GGM films at 0–90 % relative humidity. The films turned out to be impenetrable with grease even at high temperatures. NFC-GGM film with GGM-Su2 coating exhibited hydrophobic characteristics according to the water contact angle measurements. It was shown that adding 5.5 wt% of GGM to a NFC film and further 5.4 wt% of coating of GGM-Su or GGM on the film may highly enhance the feasibility of the biocomposites to be used for food packaging to replace typical oil-based non-biodegradable plastics currently used.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jayasiri HB, Purushothaman CS, Vennila A (2013) Quantitative analysis of plastic debris on recreational beaches in Mumbai, India. Mar Pollut Bull 77:107–112. doi:10.1016/j.marpolbul.2013.10.024

    Article  Google Scholar 

  2. Thamae T, Bailie C (2008) Natural fibre composites, turning waste into useful materials. VDM Verlag Dr Muller Aktiengesellschaft & Co. Kg, pp 1–7

  3. Willför S, Sjöholm R, Laine C et al (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohydr Polym 52:175–187

    Article  Google Scholar 

  4. Song T, Pranovich A, Sumerskiy I, Holmbom B (2008) Extraction of galactoglucomannan from spruce wood with pressurised hot water. Holzforschung 62:659–666. doi:10.1515/HF.2008.131

    Article  Google Scholar 

  5. Al Manasrah M, Kallioinen M, Ilvesniemi H, Maenttaeri M (2012) Recovery of galactoglucomannan from wood hydrolysate using regenerated cellulose ultrafiltration membranes. Bioresour Technol 114:375–381. doi:10.1016/j.biortech.2012.02.014

    Article  Google Scholar 

  6. Rissanen JV, Grenman H, Xu C et al (2014) Obtaining spruce hemicelluloses of desired molar mass by using pressurized hot water extraction. ChemSusChem 7:2947–2953. doi:10.1002/cssc.201402282

    Article  Google Scholar 

  7. Krogell J, Eranen K, Granholm K et al (2014) High-temperature pH measuring during hot-water extraction of hemicelluloses from wood. Ind Crop Prod 61:9–15. doi:10.1016/j.indcrop.2014.06.046

    Article  Google Scholar 

  8. Kisonen V, Eklund P, Auer M et al (2012) Hydrophobication and characterisation of O-acetyl-galactoglucomannan for papermaking and barrier applications. Carbohydr Res 352:151–158. doi:10.1016/j.carres.2012.01.005

    Article  Google Scholar 

  9. Mikkonen KS, Schmidt J, Vesterinen A-H, Tenkanen M (2013) Crosslinking with ammonium zirconium carbonate improves the formation and properties of spruce galactoglucomannan films. J Mater Sci 48:4205–4213. doi:10.1007/s10853-013-7233-9

    Article  Google Scholar 

  10. Oinonen P, Areskogh D, Henriksson G (2013) Enzyme catalyzed cross-linking of spruce galactoglucomannan improves its applicability in barrier films. Carbohydr Polym 95:690–696. doi:10.1016/j.carbpol.2013.03.016

    Article  Google Scholar 

  11. Kisonen V, Xu C, Eklund P et al (2014) Cationised O-acetyl galactoglucomannans: synthesis and characterisation. Carbohydr Polym 99:755–764. doi:10.1016/j.carbpol.2013.09.009

    Article  Google Scholar 

  12. Lozhechnikova A, Dax D, Vartiainen J et al (2014) Modification of nanofibrillated cellulose using amphiphilic block-structured galactoglucomannans. Carbohydr Polym 110:163–172. doi:10.1016/j.carbpol.2014.03.087

    Article  Google Scholar 

  13. Dax D, Eklund P, Hemming J et al (2013) Amphiphilic spruce galactoglucomannan derivatives based on naturally-occurring fatty acids. BioResources 8:3771–3790. doi:10.15376/biores.8.3.3771-3790

    Article  Google Scholar 

  14. Mikkonen KS, Stevanic JS, Joly C et al (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18:713–726. doi:10.1007/s10570-011-9524-0

    Article  Google Scholar 

  15. Trovatti E, Fernandes SCM, Rubatat L et al (2012) Pullulan–nanofibrillated cellulose composite films with improved thermal and mechanical properties. Compos Sci Technol 72:1556–1561. doi:10.1016/j.compscitech.2012.06.003

    Article  Google Scholar 

  16. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85. doi:10.1007/s10570-008-9244-2

    Article  Google Scholar 

  17. Besbes I, Vilar MR, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86:1198–1206. doi:10.1016/j.carbpol.2011.06.015

    Article  Google Scholar 

  18. Okuba K, Fujii T, Yamashita N (2005) Improvement of interfacial adhesion in bamboo polymer composite enhanced with micro-fibrillated cellulose. JSME Int J Ser Solid Mech Mater Eng 48:199–204

  19. Zhang Z, Sèbe G, Rentsch D et al (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668. doi:10.1021/cm5004164

    Article  Google Scholar 

  20. Xhanari K, Syverud K, Chinga-Carrasco G et al (2011) Structure of nanofibrillated cellulose layers at the o/w interface. J Colloid Interface Sci 356:58–62. doi:10.1016/j.jcis.2010.12.083

    Article  Google Scholar 

  21. Vuoti S, Talja R, Johansson L-S et al (2013) Solvent impact on esterification and film formation ability of nanofibrillated cellulose. Cellulose 20:2359–2370. doi:10.1007/s10570-013-9983-6

    Article  Google Scholar 

  22. Österberg M, Vartiainen J, Lucenius J et al (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647. doi:10.1021/am401046x

    Article  Google Scholar 

  23. Zhou Q, Greffe L, Baumann MJ et al (2005) Use of xyloglucan as a molecular anchor for the elaboration of polymers from cellulose surfaces: a general route for the design of biocomposites. Macromolecules 38:3547–3549. doi:10.1021/ma047712k

    Article  Google Scholar 

  24. Stevanic JS, Mikkonen KS, Xu C et al (2014) Wood cell wall mimicking for composite films of spruce nanofibrillated cellulose with spruce galactoglucomannan and arabinoglucuronoxylan. J Mater Sci 49:5043–5055. doi:10.1007/s10853-014-8210-7

    Article  Google Scholar 

  25. Escalante A, Gonçalves A, Bodin A et al (2012) Flexible oxygen barrier films from spruce xylan. Carbohydr Polym 87:2381–2387. doi:10.1016/j.carbpol.2011.11.003

    Article  Google Scholar 

  26. Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459. doi:10.1007/s10086-013-1365-z

    Article  Google Scholar 

  27. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441. doi:10.1016/j.eurpolymj.2007.05.038

    Article  Google Scholar 

  28. Henriksson M, Berglund LA, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585. doi:10.1021/bm800038n

    Article  Google Scholar 

  29. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644. doi:10.1021/bm2008907

    Article  Google Scholar 

  30. T 454 om-94 Turperntine test for voids in glassine and greaseproof papers (2000)

  31. Bollstrom R, Saarinen JJ, Raty J, Toivakka M (2012) Measuring solvent barrier properties of paper. Meas Sci Technol 23:015601. doi:10.1088/0957-0233/23/1/015601

    Article  Google Scholar 

  32. Kisonen V, Xu C, Bollström R et al (2014) O-acetyl galactoglucomannan esters for barrier coatings. Cellulose 21:4497–4509. doi:10.1007/s10570-014-0428-7

    Article  Google Scholar 

  33. Hannuksela T, Hervé du Penhoat C (2004) NMR structural determination of dissolved O-acetylated galactoglucomannan isolated from spruce thermomechanical pulp. Carbohydr Res 339:301–312. doi:10.1016/j.carres.2003.10.025

    Article  Google Scholar 

  34. Ekholm FS, Ardá A, Eklund P et al (2012) Studies related to Norway spruce galactoglucomannans: chemical synthesis, conformation analysis, NMR spectroscopic characterization, and molecular recognition of model compounds. Chemistry 18:14392–14405. doi:10.1002/chem.201200510

    Article  Google Scholar 

  35. Yuan Y, Lee TR (2013) Contact angle and wetting properties. In: Bracco G, Holst B (eds) Surface science techniques. Springer, Berlin, Heidelberg, pp 3–34

  36. Spiridon I, Teacă C-A, Bodîrlău R, Bercea M (2013) Behavior of cellulose reinforced cross-linked starch composite films made with tartaric acid modified starch microparticles. J Polym Environ 21:431–440. doi:10.1007/s10924-012-0498-2

    Article  Google Scholar 

  37. Kwak S-Y, Jung SG, Kim SH (2001) Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films. Environ Sci Technol 35:4334–4340. doi:10.1021/es010630g

    Article  Google Scholar 

  38. Hartman J, Albertsson A-C, Sjöberg J (2006) Surface- and bulk-modified galactoglucomannan hemicellulose films and film laminates for versatile oxygen barriers. Biomacromolecules 7:1983–1989. doi:10.1021/bm060129m

    Article  Google Scholar 

  39. Kjellgren H, Gaellstedt M, Engstroem G, Jaernstroem L (2006) Barrier and surface properties of chitosan-coated greaseproof paper. Carbohydr Polym 65:453–460. doi:10.1016/j.carbpol.2006.02.005

    Article  Google Scholar 

  40. Mikkonen KS, Heikkinen S, Soovre A et al (2009) Films from oat spelt arabinoxylan plasticized with glycerol and sorbitol. J Appl Polym Sci 114:457–466. doi:10.1002/app.30513

    Article  Google Scholar 

  41. Kisonen V, Xu C, Böllstrom R et al (2014) O-acetyl galactoglucomannan esters for barrier coatings. Cellul Dordr Neth 21:4497–4509. doi:10.1007/s10570-014-0428-7

    Google Scholar 

  42. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574. doi:10.1007/s10570-009-9393-y

    Article  Google Scholar 

  43. Aulin C, Karabulut E, Tran A et al (2013) Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS Appl Mater Interfaces 5:7352–7359. doi:10.1021/am401700n

    Article  Google Scholar 

  44. Hansen NML, Blomfeldt TOJ, Hedenqvist MS, Plackett DV (2012) Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan. Cellul Dordr Neth 19:2015–2031. doi:10.1007/s10570-012-9764-7

    Google Scholar 

  45. Mikkonen KS, Tenkanen M (2012) Sustainable food-packaging materials based on future biorefinery products: xylans and mannans. Trends Food Sci Technol 28:90–102. doi:10.1016/j.tifs.2012.06.012

    Article  Google Scholar 

  46. Van Tuil R, Fowler P, Lawther M, Weber CJ (2000) Properties of biobased packaging materials. In Biobased packaging materials for the food industry—Status and perspectives. KVL, Frederiksberg, pp 8–33

  47. Eronen P, Österberg M, Heikkinen S et al (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290. doi:10.1016/j.carbpol.2011.06.031

    Article  Google Scholar 

  48. Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9:1493–1505. doi:10.1021/bm800053z

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out in framework of the Future Biorefinery Project by the Finnish Funding Agency for Technology and Innovation and Fibic Ltd. This work was part of the activities of the Åbo Akademi Process Chemistry Centre and Bioregs graduate school. This work made use of Aalto University Bioeconomy Facilities. We thank the staff of Metla in Vantaa and Lappeenranta University of Technology for providing the filtrated GGM, Hanna Lindqvist of our laboratory and Maristiina Nurmi of the Laboratory of Paper Coating and Converting for the practical help. The consultation on the concept by Lars Berglund of KTH, is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Kisonen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisonen, V., Prakobna, K., Xu, C. et al. Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. J Mater Sci 50, 3189–3199 (2015). https://doi.org/10.1007/s10853-015-8882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8882-7

Keywords

Navigation