Skip to main content
Log in

On the kinetics of cellulose degradation: looking beyond the pseudo zero order rate equation

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The kinetics of cellulose degradation was analysed by means of a two-stage model, characterised by an autoretardant and autocatalytic regime, later tempered by the consumption of glycosidic bonds in the amorphous regions. The proposed model explains the effects on the kinetic equations of different modes of ageing (acid hydrolysis, ageing in ventilated oven or sealed vessels), initial oxidation of cellulose and experimental procedures (with or without reduction of oxidised groups). The autoretardant branch can be analysed in a quantitative way, while the integration of the non-linear autocatalytic branch is allowed in some cases, characterised by the decrease of pH and/or emission of acid volatile organic compounds (VOCs). Most of the controversial results of the literature can be easily explained, but the proposed model offers also a guide for further studies on the kinetics of cellulose degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

α:

Excess of produced acidity

A:

Rearranged product of cellulose hydrolysis (in general)

C:

Cellulose (in general)

c°:

Initial amount of non-oxidised scissile units

DP:

Degree of polymerisation (with suffixes w, weight average; n, number average)

h:

Acidity produced by the degradation

H:

Acidity (in general)

O:

Oxidised cellulose (in general)

k:

Rate constant of the hydrolytic mechanism (with suffixes a, amorphous regions of cellulose; c, crystalline regions of cellulose; w, weak links)

kA :

Rate constant of the autocatalytic mechanism

ko :

Rate constant of oxidation

LODP:

Levelling-off degree of polymerisation

n°:

Initial amount of overall scissile units (with suffixes a, glycosidic bonds in the amorphous domain; c, glycosidic bonds in the crystalline domain; w, weak links)

ox°:

Initial amount of scissile units activated by the presence of oxidised groups in the adjacent anhydroglucose rings

P:

Product of cellulose hydrolysis (in general)

S:

Number of scissions per cellulose chain

References

  • Ali M, Emsley AM, Herman H, Heywood RJ (2001) Spectroscopic studies of the ageing of cellulosic paper. Polymer 42:2893–2900

    Article  CAS  Google Scholar 

  • Barański A, Dziembaj R, Konieczna A, Kowalski A, Łagan JM, Proniewicz L (2000) Methodology of kinetic investigation of cellulose degradation. III Congress of Chemical Technology, Gliwice, Poland 5–8 October 2000. Technologia Chemiczna na Przełomie Wieków, Wydawnictwo Stałego Komitetu Kongresów Technologii Chemicznej (Chemical Technology Between Centuries, A Publication of the Permanent Committee of Chemical Technology Congress), Gliwice, pp 441–450. Full text in PDF format: http://www.chemia.uj.edu.pl/kp/deg_kinetics.pdf

  • Barański A, Konieczna-Molenda A, Łagan JM, Proniewicz LM (2003) Catastrophic room temperature degradation of cotton cellulose. Restaurator 24:36–45

    Article  Google Scholar 

  • Bicchieri M, Pepa S (1996) The degradation of cellulose with ferric and cupric ions in a low-acid medium. Restaurator 17:165–183

    CAS  Google Scholar 

  • Bogaard J, Whitmore PM (2001) Effects of dilute calcium washing treatments on paper. J Am Inst Conserv 40:105–123

    Article  Google Scholar 

  • Bohrn R, Potthast A, Schichser S, Rosenau T, Sixta H, Kosma P (2006) The FDAM method: determination of carboxyl profiles in cellulosic materials by combining group-selective fluorescence labeling with GPC. Biomacromolecules 7:1743–1750

    Article  CAS  Google Scholar 

  • Bülow AE, Bégin P, Carter H, Burns T (2000) Migration of volatile compounds through stacked sheets of paper during accelerated ageing. Part II: variable temperature studies. Restaurator 21:187–203

    Article  Google Scholar 

  • Calvini P (2005) The influence of levelling-off degree of polymerisation on the kinetics of cellulose degradation. Cellulose 12:485–496

    Article  CAS  Google Scholar 

  • Calvini P, Gorassini A (2006) On the rate of paper degradation: lessons from the past. Restaurator 27(4):275–290

    Article  CAS  Google Scholar 

  • Calvini P, Conio G, Lorenzoni M, Pedemonte E (2004) Viscometric determination of dialdehyde content in periodate oxycellulose. Part I. Methodology. Cellulose 11:99–107

    Article  CAS  Google Scholar 

  • Calvini P, Conio G, Princi E, Vicini S, Pedemonte E (2006) Viscometric determination of carbonyl groups in periodate oxycellulose. Part II. Topochemistry of oxidation. Cellulose 13:571–579

    Article  CAS  Google Scholar 

  • Calvini P, Gorassini A, Merlani AL (2007) Autocatalytic degradation of cellulose paper in sealed vessels. Restaurator 28(1):47–54

    Article  CAS  Google Scholar 

  • Cantoni C, Zennaro F, Bertocchi C, Mariotti P, Rizzo R (1998) C6-oxidized cellulose: ion interactions with mono- and divalent cations. Biopolymers 45:157–163

    Article  CAS  Google Scholar 

  • Carter H, Bégin P, Grattan D (2000) Migration of volatile compounds through stacked sheets of paper during accelerated ageing. Part I: acid migration at 90°C. Restaurator 21:77–84

    Article  CAS  Google Scholar 

  • Chamberlain DC, Priest DJ (1996) Identity of cross links in thermally-aged paper. Cellulose Chem Technol 30:329–334

    CAS  Google Scholar 

  • Dang VQ, Nguyen L (2007) A universal kinetic equation for characterising the fractal nature of delignification of lignocellulose materials. Cellulose 14:153–160

    Article  CAS  Google Scholar 

  • Daruwalla EH, Narsian MG (1966) Detection and identification of acid-sensitive linkages in cellulose fiber substances. TAPPI 49(3):106–111

    CAS  Google Scholar 

  • Dupont AL, Mortha G (2004) Comparative evaluation of size-exclusion chromatography and viscometry for the characterisation of cellulose. J Chromatogr A 1026:129–141

    Article  CAS  Google Scholar 

  • Emsley AM, Stevens GC (1994) Kinetics and mechanism of the low-temperature degradation of cellulose. Cellulose 1:26–56

    Article  CAS  Google Scholar 

  • Emsley AM, Heywood RJ, Ali M, Eley CM (1997) On the kinetics of degradation of cellulose. Cellulose 4:1–5

    Article  CAS  Google Scholar 

  • Emsley AM, Ali M, Heywood RJ (2000a) A size exclusion chromatography study of cellulose degradation. Polymer 41:8513–8525

    Article  CAS  Google Scholar 

  • Emsley AM, Xiao X, Heywood RJ, Ali M (2000b) Degradation of cellulosic insulation in power transformers. Part 3: effect of oxygen and water on ageing in oil. IEE Proc Sci Meas Technol 147(3):115–119

    Article  CAS  Google Scholar 

  • Evans R, Wallis AFA (1989) Cellulose molecular weights determined by viscometry. J Appl Polym Sci 37:2331–2340

    Article  CAS  Google Scholar 

  • Feller RL, Lee SB, Bogaard J (1986) The kinetics of cellulose deterioration. In: Needles HL, Zeronian SH (eds) Historic textile and paper materials: conservation and characterization. Advances in chemical series 212. ACS, Washington DC, pp 329–346

  • Fung DPC (1969) Kinetics and mechanism of the thermal degradation of cellulose. TAPPI 52(2):319–321

    CAS  Google Scholar 

  • Guaita MG, Chiantore O, Luda MP (1990) Monte Carlo simulations of polymer degradations. I. Degradations without volatilization. Macromolecules 23:2087–2092

    Article  CAS  Google Scholar 

  • Guo XY, Peng SY (1995) Kinetics of the first-order reaction on fractals and Monte Carlo simulations. Chem Phys Lett 242:228–231

    Article  CAS  Google Scholar 

  • Håkansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 12:177–183

    Article  CAS  Google Scholar 

  • Håkansson H, Ahlgren P, Germgård U (2005) The degree of disorder in hardwood kraft pulps studied by means of LODP. Cellulose 12:327–335

    Article  CAS  Google Scholar 

  • Herdan G (1953) Fitting of polymer distributions of molecular weight by the method of moments. J Polym Sci 10(1):1–18

    Article  CAS  Google Scholar 

  • Heywood RJ, Stevens GC, Ferguson C, Emsley AM (1999) Life assessment of cable paper using slow thermal ramp method. Thermochim Acta 332:189–195

    Article  CAS  Google Scholar 

  • Kato KL, Cameron RE (1999) A review of the relationship between thermally-accelerated ageing of paper and hornification. Cellulose 6:23–40

    Article  CAS  Google Scholar 

  • Kato KL, Cameron RE (2002) Structural aspects of the thermally accelerated ageing of cellulose: effect of cellulose source and ageing conditions. Polym Int 51:707–714

    Article  CAS  Google Scholar 

  • Lauriol J-M, Comtat J, Froment P, Pla F, Robert A (1987) Molecular weight distribution of cellulose by on-line size exclusion chromatography – low angle laser light scattering. Part II. Acid and enzymatic hydrolysis. Holzforschung 41:165–169

    Article  CAS  Google Scholar 

  • Łojewska J, Lubańska A, Miśkowiec P, Łojewski T, Proniewicz LM (2006) FTIR in situ transmission studies on the kinetics of paper degradation via hydrolytic and oxidative paths. Appl Phys A 83:597–603

    Article  CAS  Google Scholar 

  • Marx-Figini M (1983) Newer structural and biosynthetic aspects of native cellulose as revealed by the kinetics of its hydrolytic degradation. J Appl Polym Sci Appl Polym Symp 37:157–164

    CAS  Google Scholar 

  • Marx-Figini M (1986) On the kinetics of hydrolytic degradation of cellulose in the range of medium and low degrees of polymerization. Makromol Chem 187:679–687

    Article  CAS  Google Scholar 

  • Marx-Figini M, Coun-Matus M (1981) On the kinetics of hydrolytic degradation of native cellulose. Makromol Chem 182:3603–3616

    Article  CAS  Google Scholar 

  • Michie RIC, Sharples A, Walter AA (1961) The nature of acid-sensitive linkages in cellulose. J Polym Sci 51:85–98

    CAS  Google Scholar 

  • Nelson ML, Tripp VW (1953) Determination of the leveling-off degree of polymerization of cotton and rayon. J Polym Sci 10(6):577–586

    Article  CAS  Google Scholar 

  • Philipp HJ, Nelson ML, Ziifle HM (1947) Crystallinity of cellulose fibers as determined by acid hydrolysis. Text Res J 17(11):585–596

    Article  CAS  Google Scholar 

  • Piantanida G, Bicchieri M, Coluzza C (2005) Atomic force microscopy characterization of the ageing of pure cellulose paper. Polymer 46:12313–12321

    Article  CAS  Google Scholar 

  • Potthast A, Röhrling J, Rosenau T, Bogards A, Sixta H, Kosma P (2003) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 3. Monitoring oxidative processes. Biomacromolecules 4:743–749

    Article  CAS  Google Scholar 

  • Santucci L, Zappalà Plossi MG (1975) Invecchiamento della carta in tubo chiuso (Paper ageing in sealed jars). In: Urbani G (ed) Problemi di conservazione. Compositori, Bologna, pp 501–512

    Google Scholar 

  • Sharples A (1954a) The hydrolysis of cellulose. Part I. The fine structure of Egyptian cotton. J Polym Sci 13:393–401

    Article  CAS  Google Scholar 

  • Sharples A (1954b) The hydrolysis of cellulose. Part II. Acid sensitive linkages in Egyptian cotton. J Polym Sci 14:95–104

    Article  CAS  Google Scholar 

  • Sharples A (1971) Degradation of cellulose and its derivatives. A. Acid hydrolysis and alcoholysis. In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives, vol V, Pt V, 2nd edn. Wiley-Interscience, NY, pp 991–1006

  • Siebrand W, Wildman TA (1986) Dispersive kinetics: a structural approach to nonexponential processes in disordered media. Acc Chem Res 19:238–243

    Article  CAS  Google Scholar 

  • Soares S, Ricardo NMPS, Heatley F, Rodrigues E (2001) Low temperature thermal degradation of cellulosic insulating paper in air and transformer. Polym Int 50:303–308

    Article  CAS  Google Scholar 

  • Soubelet O, Presta MA, Marx-Figini M (1989) On the distribution of the degree of polymerization occurring in the third kinetic stage of dilute-acid-catalyzed degradation of cellulose. Makromol Chem 190:3251–3256

    Article  CAS  Google Scholar 

  • Strlič M, Kolar J, Žigon M, Pihlar B (1998) Evaluation of size-exclusion chromatography and viscometry for the determination of molecular masses of oxidised cellulose. J Chromatogr A 805:93–99

    Article  Google Scholar 

  • Tang L-G, Hon DN-S, Pan S-H, Zhu Y-Q, Wang Z, Wang Z-Z (1996) Evaluation of microcrystalline cellulose. I. Changes in ultrastructural characteristics during preliminary acid hydrolysis. J Appl Polym Sci 59:483–488

    Article  CAS  Google Scholar 

  • Väljamäe P, Kipper K, Pettersson G, Johansson G (2003) Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics. Biotechnol Bioeng 84(2):254–257

    Article  CAS  Google Scholar 

  • Wadehra IL, Manley RStJ (1965) The accessibility of hydrocellulose and oligosaccharides by hydrogen exchange. Makromol Chemie 94:42–51

    Article  Google Scholar 

  • Whitmore PM, Bogaard J (1994) Determination of the cellulose scission route in the hydrolytic and oxidative degradation of paper. Restaurator 15:26–45

    CAS  Google Scholar 

  • Whitmore PM, Bogaard J (1995) The effect of oxidation on the subsequent oven aging of filter paper. Restaurator 16:10–30

    Article  CAS  Google Scholar 

  • Zervos S, Moropoulou A (2005) Cotton cellulose ageing in sealed vessels. Kinetic model of autocatalytic depolymerization. Cellulose 12:485–496

    Article  CAS  Google Scholar 

  • Zou X, Uesaka T, Gurnagul N (1996) Prediction of paper permanence by accelerated aging. I. Kinetic analysis of the aging process. Cellulose 3:243–267

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Calvini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvini, P., Gorassini, A. & Merlani, A.L. On the kinetics of cellulose degradation: looking beyond the pseudo zero order rate equation. Cellulose 15, 193–203 (2008). https://doi.org/10.1007/s10570-007-9162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-007-9162-8

Keywords

Navigation