Skip to main content
Log in

Chemical physics of cellulose nitration

  • Kinetics and Mechanism of Chemical Reactions. Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The physical mechanisms responsible for the kinetics of nitration of cellulose raw materials of different origin have been studied. It has been shown that the main nitration rate-limiting factor is the speed of untwisting of supercoiled cellulose fibers. This process limits the penetration of nitrating agents into microcrystalline regions and, thus, the total reaction rate. The constructed physical model provides an adequate explanation of all the experimentally observed features of the cellulose nitration process, particularly as a function of cellulose origin (cotton, flax, wood) and preparation/treatment methods (sulfite, sulfate, bleached, refined with sulfurous or boric acids or acetone). The theoretical results have been tested in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Nikitin, Chemistry of Wood and Cellulose (Akad. Nauk SSSR, Moscow, Leningrad, 1962) [in Russian].

    Google Scholar 

  2. I. L. Knunyants and N. S. Zefirov, Chemical Encyclopedy (Sov. Entsiklopediya, Moscow, 1988) [in Russian].

    Google Scholar 

  3. E. M. Belova, N. G. Vais, V. F. Sopin, A. I. Kazakov, Yu. I. Rubtsov, G. B. Manelis, and G. N. Marchenko, Russ. Chem. Bull. 38, 2244 (1989).

    Article  Google Scholar 

  4. V. A. Rafeev, Yu. L. Rubtsov, T. V. Sorokina, and N. V. Chukanov, Russ. Chem. Bull. 48, 66 (1999).

    Article  CAS  Google Scholar 

  5. V. I. Kovalenko, V. F. Sopin, and G. M. Khrapkovskii, Structural Kinetic Features of Preparation and Thermal Degradation of Cellulose Nitrate (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  6. G. N. Marchenko, V. F. Sopin, et al., Vysokomol. Soedin., No. 5, 1066 (1989).

    Google Scholar 

  7. V. A. Rafeev, Yu. L. Rubtsov, and T. V. Sorokina, Russ. Chem. Bull. 45, 328 (1996).

    Article  Google Scholar 

  8. V. A. Rafeev, Yu. L. Rubtsov, and T. V. Sorokina, Russ. Chem. Bull. 45, 1879 (1996).

    Article  Google Scholar 

  9. A. I. Mikhailov, L. P. Bel’kova, and V. S. Gromov, Khim. Drev., No. 6, 50 (1980).

    Google Scholar 

  10. A. I. Mikhailov, L. P. Bel’kova, and V. S. Gromov, Khim. Drev., No. 6, 59 (1980).

    Google Scholar 

  11. E. T. Denisov, O. M. Sarkisov, and G. I. Likhtenshtein, Chemical Kinetics (Khimiya, Moscow, 2000) [in Russian].

    Google Scholar 

  12. S. V. Stovbun, A. A. Skoblin, A. M. Zanin, et al., Bull. Exp. Biol. Med. 154, 34 (2012).

    Article  CAS  Google Scholar 

  13. V. A. Tverdislov, Biophysics 58, 128 (2013).

    Article  CAS  Google Scholar 

  14. S. V. Stovbun and A. A. Skoblin, Mosc. Univ. Phys. Bull. 67, 317 (2012).

    Article  Google Scholar 

  15. D. V. Zlenko and S. V. Stovbun, Russ. J. Phys. Chem. B 8, 499 (2014).

    Article  CAS  Google Scholar 

  16. F. Revol, H. Bradford, J. Giasson, R. H. Marchessault, and D. G. Gray, Int. J. Biol. Macromol. 14, 170 (1992).

    Article  CAS  Google Scholar 

  17. G. C. Ruben, G. H. Bokelman, and W. Krakow, Plant Cell Wall 399, 78 (1989).

    Google Scholar 

  18. K. Muhlethaler, Ann. Rev. Plant Phys. 42 (18), 24 (1967).

    Google Scholar 

  19. A. N. J. Heyn, J. Cell Biol. 9, 181 (1966).

  20. R. H. Newman, Solid State Nucl. Magn. Reson., 15 (1999).

    Google Scholar 

  21. A. N. Fernandes, L. H. Thomasb, C. M. Altanerc, et al., Proc. Natl. Acad. Sci. 108, E1195 (2011).

    Article  Google Scholar 

  22. C. Somerville, Ann. Rev. Cell Dev. Biol. 22, 53 (2006).

    Article  CAS  Google Scholar 

  23. G. Murch, Diffusion in Crystalline Solids, N.Y., Acad. Press, 1984.

    Google Scholar 

  24. C. K. Ingold, Structure and Mechanism in Organic Chemistry (Cornell Univ., Ithaca, 1969).

    Google Scholar 

  25. V. I. Gol’danskii, L. I. Trakhtenberg, and V. N. Flerov, Tunneling Phenomena in Chemical Physics (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  26. J. N. Israelachvili, Intermolecular and Surface Forces (Academic, New York, 2007).

    Google Scholar 

  27. E. V. Novozhilov, D. G. Chukhchin, K. Yu. Terent’ev, and I. A. Khadyko, Khim. Rastit. Syr’ya, No. 2, 15 (2012).

    Google Scholar 

  28. A. A. Silin, Friction and We (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  29. G. Considine, Van Norstrand’s Scientific Encyclopedia (Wiley, New York, 2006).

    Google Scholar 

  30. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1987; Pergamon Press, New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stovbun.

Additional information

Original Russian Text © S.V. Stovbun, S.N. Nikol’skii, V.P. Mel’nikov, M.G. Mikhaleva, Ya.A. Litvin, A.N. Shchegolikhin, D.V. Zlenko, V.A. Tverdislov, D.S. Gerasimov, A.D. Rogozin, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 4, pp. 20–35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stovbun, S.V., Nikol’skii, S.N., Mel’nikov, V.P. et al. Chemical physics of cellulose nitration. Russ. J. Phys. Chem. B 10, 245–259 (2016). https://doi.org/10.1134/S199079311602024X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079311602024X

Keywords

Navigation