Skip to main content
Log in

Homoclinic dynamics in a restricted four-body problem: transverse connections for the saddle-focus equilibrium solution set

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We describe a method for computing an atlas for the stable or unstable manifold attached to an equilibrium point and implement the method for the saddle-focus libration points of the planar equilateral restricted four-body problem. We employ the method at the maximally symmetric case of equal masses, where we compute atlases for both the stable and unstable manifolds. The resulting atlases are comprised of thousands of individual chart maps, with each chart represented by a two-variable Taylor polynomial. Post-processing the atlas data yields approximate intersections of the invariant manifolds, which we refine via a shooting method for an appropriate two-point boundary value problem. Finally, we apply numerical continuation to some of the BVP problems. This breaks the symmetries and leads to connecting orbits for some nonequal values of the primary masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Abraham, R.H.: Chaostrophes, intermittency, and noise. In: Chaos, Fractals, and Dynamics (Guelph, Ont., 1981/1983), Volume 98 of Lecture Notes in Pure and Applied Mathematics, pp. 3–22. Dekker, New York (1985)

  • Álvarez-Ramírez, M., Vidal, C.: Dynamical aspects of an equilateral restricted four-body problem. Math. Probl. Eng. 23 (2009). Article ID 181360

  • Alvarez-Ramírez, M., Barrabés, E.: Transport orbits in an equilateral restricted four-body problem. Celest. Mech. Dyn. Astron. 121(2), 191–210 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Alvarez-Ramírez, M., Delgado, J., Vidal, C.: Global regularization of a restricted four-body problem. Int. J. Bifurc. Chaos Appl. Sci. Eng. 24(7), 1450092, 15 (2014)

  • Alvarez-Ramírez, M., García, A., Palacián, J.F., Yanguas, P.: Oscillatory motions in restricted n-body problems. J. Differ. Equ. 265, 779–803 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Baltagiannis, A.N., Papadakis, K.E.: Equilibrium points and their stability in the restricted four-body problem. Int. J. Bifurc. Chaos Appl. Sci. Eng. 21(8), 2179–2193 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  • Baltagiannis, A.N., Papadakis, K.E.: Families of periodic orbits in the restricted four-body problem. Astrophys. Space Sci. 336, 357–367 (2011b)

    Article  ADS  MATH  Google Scholar 

  • Barrabés, E., Mondelo, J.M., Ollé, M.: Numerical continuation of families of homoclinic connections of periodic orbits in the RTBP. Nonlinearity 22(12), 2901–2918 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Barros, J.F., Leandro, E.S.G.: The set of degenerate central configurations in the planar restricted four-body problem. SIAM J. Math. Anal. 43(2), 634–661 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Barros, J.F., Leandro, E.S.G.: Bifurcations and enumeration of classes of relative equilibria in the planar restricted four-body problem. SIAM J. Math. Anal. 46(2), 1185–1203 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Burgos-García, J.: Families of periodic orbits in the planar Hill’s four-body problem. Astrophys. Space Sci. 361(11), 353, 21 (2016)

    Article  MathSciNet  Google Scholar 

  • Burgos-García, J., Bengochea, A.: Horseshoe orbits in the restricted four-body problem. Astrophys. Space Sci. 362(11), 212, 14 (2017)

    Article  MathSciNet  Google Scholar 

  • Burgos-García, J., Delgado, J.: Periodic orbits in the restricted four-body problem with two equal masses. Astrophys. Space Sci. 345(2), 247–263 (2013a)

    Article  ADS  MATH  Google Scholar 

  • Burgos-García, J., Delgado, J.: On the “blue sky catastrophe” termination in the restricted four-body problem. Celest. Mech. Dyn. Astron. 117(2), 113–136 (2013b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Burgos-García, J., Gidea, M.: Hill’s approximation in a restricted four-body problem. Celest. Mech. Dyn. Astron. 122(2), 117–141 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Burgos-García, J., Lessard, J.P., Mireles James, J.D.: Spatial periodic orbits in the equaliteral circular restricted four body problem: computer assisted proofs of existence. Celest. Mech. Dyn. Astron. 131, 2 (2019)

    Article  ADS  Google Scholar 

  • Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces. Indiana Univ. Math. J. 52(2), 283–328 (2003a)

    Article  MathSciNet  MATH  Google Scholar 

  • Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds II. Regularity with respect to parameters. Indiana Univ. Math. J. 52(2), 329–360 (2003b)

    Article  MathSciNet  MATH  Google Scholar 

  • Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. III. Overview and applications. J. Differ. Equ. 218(2), 444–515 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Canalias, E., Masdemont, J.J.: Homoclinic and heteroclinic transfer trajectories between planar Lyapunov orbits in the sun–earth and earth–moon systems. Discrete Contin. Dyn. Syst. Ser. A 14(2), 261–279 (2006)

    MathSciNet  MATH  Google Scholar 

  • Champneys, A.R., Kuznetsov, Y.A., Sandstede, B.: A numerical toolbox for homoclinic bifurcation analysis. Int. J. Bifurc. Chaos Appl. Sci. Eng. 6(5), 867–887 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng, X., She, Z.: Study on chaotic behavior of the restricted four-body problem with an equilateral triangle configuration. Int. J. Bifurc. Chaos Appl. Sci. Eng. 27(2), 1750026, 12 (2017)

    MathSciNet  MATH  Google Scholar 

  • Darwin, G.H.: Periodic orbits. Acta Math. 21(1), 99–242 (1897)

    Article  MathSciNet  MATH  Google Scholar 

  • de la Llave, R., Mireles James, J.D.: Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete Contin. Dyn. Syst. 32(12), 4321–4360 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Devaney, R.L.: Homoclinic orbits in Hamiltonian systems. J. Differ. Equ. 21(2), 431–438 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Devaney, R.L.: Blue sky catastrophes in reversible and Hamiltonian systems. Indiana Univ. Math. J. 26(2), 247–263 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Doedel, E.J., Friedman, M.J.: Numerical computation of heteroclinic orbits. J. Comput. Appl. Math. 26(1–2), 155–170 (1989). (Continuation techniques and bifurcation problems)

    Article  MathSciNet  MATH  Google Scholar 

  • Doedel, E.J., Friedman, M.J., Kunin, B.I.: Successive continuation for locating connecting orbits. Numer. Algorithms 14(1–3), 103–124 (1997). [Dynamical numerical analysis (Atlanta, GA, 1995)]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gidea, M., Burgos, M.: Chaotic transfers in three- and four-body systems. Phys. A 328(3–4), 360–366 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Haro, À., Canadell, M., Figueras, J.-L., Luque, A., Mondelo, J.-M.: The Parameterization Method for Invariant Manifolds, Volume 195 of Applied Mathematical Sciences. Springer, Cham (2016). (From rigorous results to effective computations )

    Book  MATH  Google Scholar 

  • Henrard, J.: Proof of a conjecture of E. Strömgren. Celest. Mech. 7, 449–457 (1973)

    Article  ADS  MATH  Google Scholar 

  • Kalies, W., Kepley, S., Mireles James, J.D.: Analytic continuation of local (un)stable manifolds with rigorous computer assisted error bounds. SIAM J. Appl. Dyn. Syst. 17(1), 157–202 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Kepley, S., Mireles James, J.D.: Chaotic motions in the restricted four body problem via Devaney’s saddle-focus homoclinic tangle theorem. J. Differ. Equ. 226(4), 1709–1755 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Leandro, E.S.G.: On the central configurations of the planar restricted four-body problem. J. Differ. Equ. 226(1), 323–351 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lerman, L.M.: Complex dynamics and bifurcations in a Hamiltonian system having a transversal homoclinic orbit to a saddle focus. Chaos 1(2), 174–180 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lerman, L.M.: Dynamical phenomena near a saddle-focus homoclinic connection in a Hamiltonian system. J. Stat. Phys. 101(1/2), 357–372 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lessard, J.-P., Mireles James, J.D., Ransford, J.: Automatic differentiation for Fourier series and the radii polynomial approach. Phys. D 334(1), 174–186 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Moulton, F.R., Buchanan, D., Buck, T, Griffin, F.L., Longley, W.R., MacMillan, W.D.: Periodic orbits. Number Publication No. 161. Carnegie Institution of Washington (1920)

  • Papadakis, K.E.: Families of asymmetric periodic solutions in the restricted four-body problem. Astrophys. Space Sci. 361(12), 377, 15 (2016a)

    Article  MathSciNet  Google Scholar 

  • Papadakis, K.E.: Families of three-dimensional periodic solutions in the circular restricted four-body problem. Astrophys. Space Sci. 361(4), 129, 14 (2016b)

    Article  MathSciNet  Google Scholar 

  • Pedersen, P.: Librationspunkte im restringierten vierkörperproblem. Dan. Mat. Fys. Medd. 21(6), 1–80 (1944)

    MATH  Google Scholar 

  • Pedersen, P.: Stabilitätsuntersuchungen im restringierten vierkörperproblem. Dan. Mat. Fys. Medd. 26(16), 1–38 (1952)

    MATH  Google Scholar 

  • Rabe, E.: Determination and survey of periodic Trojan orbits in the restricted problem of three bodies. Astron. J. 66, 500–513 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  • Rump, S.M.: INTLAB—INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999). http://www.ti3.tu-harburg.de/rump/

  • She, Z., Cheng, X.: The existence of a Smale horseshoe in a planar circular restricted four-body problem. Celest. Mech. Dyn. Astron. 118(2), 115–127 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • She, Z., Cheng, X., Li, C.: The existence of transversal homoclinic orbits in a planar circular restricted four-body problem. Celest. Mech. Dyn. Astron. 115(3), 299–309 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Shilńikov, L.P.: Existence of a countable set of periodic motions in a four-dimensional space in an extended neighborhood of a saddle-focus. Dokl. Akad. Nauk SSSR 172, 54–57 (1967)

    MathSciNet  Google Scholar 

  • Shilńikov, L.P.: On the question of the structure of an extended neighborhood of a structurally stable state of equilibrium of saddle-focus type. Mat. Sb. (N.S.) 81(123), 92–103 (1970a)

    MathSciNet  Google Scholar 

  • Shilńikov, L.P.: A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type. Math. USSR Sb. 10(1), 91 (1970b)

    Article  Google Scholar 

  • Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V.: Showcase of blue sky catastrophes. Int. J. Bifurc. Chaos Appl. Sci. Eng. 24(8), 1440003, 10 (2014)

    MathSciNet  MATH  Google Scholar 

  • Simó, C.: Relative equilibrium solutions in the four-body problem. Celest. Mech. 18(2), 165–184 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Strömgren, E.: Connaissance actuelle des orbites dans le probleme des trois corps. Bull. Astron. 9, 87–130 (1934)

    ADS  MATH  Google Scholar 

  • Szebehely, V.: Theory of Orbits. Academic Press Inc., Cambridge (1967)

    MATH  Google Scholar 

  • Szebehely, V., Flandern, T.V.: A family of retegrade orbits around the triangular equilibrium points. Astron. J. 72(3), 373–379 (1967)

    Article  ADS  Google Scholar 

  • Szebehely, V., Nacozy, P.: A class of E. Strömgren’s direct orbits in the restricted problem. Astron. J. 77(2), 184–190 (1967)

    Article  ADS  Google Scholar 

  • Van den Berg, J.B., Mireles James, J.D., Reinhardt, C.: Computing (un)stable manifolds with validated error bounds: non-resonant and resonant spectra. J. Nonlinear Sci. 26, 1055–1095 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank two anonymous referees who carefully read the submitted version of the manuscript. Their suggestions greatly improved the final version. The second author was partially supported by NSF Grant DMS-1813501. Both authors were partially supported by NSF Grant DMS-1700154 and by the Alfred P. Sloan Foundation Grant G-2016-7320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Mireles James.

Ethics declarations

Conflict of interest

The authors of this manuscript certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria, educational grants, participation in speaker’s bureaus, membership, employment, consultancies, stock ownership, or other equity interest, and expert testimony or patent-licensing arrangements), or nonfinancial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was partially supported by NSF Grant DMS-1813501. Both authors were partially supported by NSF Grant DMS-1700154 and by the Alfred P. Sloan Foundation Grant G-2016-7320.

Appendices

Rotational symmetry for the equal mass case

Let \(m_1 = m_2 = m_3 = 1/3\) and \(\theta = \frac{2 \pi }{3}\). Define the linear map, \(\varphi : \mathbb {R}^4 \rightarrow \mathbb {R}^4\), by

$$\begin{aligned} \varphi (x,\dot{x},y,\dot{y}) = \left( \begin{array}{cccc} \cos (\theta ) &{}\quad 0 &{}\quad - \sin (\theta ) &{}\quad 0 \\ 0 &{}\quad \cos (\theta ) &{}\quad 0 &{}\quad - \sin (\theta ) \\ \sin (\theta ) &{}\quad 0 &{}\quad \cos (\theta ) &{}\quad 0 \\ 0 &{}\quad \sin (\theta ) &{}\quad 0 &{}\quad \cos (\theta ) \\ \end{array} \right) \left( \begin{array}{c} x \\ \dot{x} \\ y \\ \dot{y} \end{array} \right) =(\varphi _1, \varphi _2, \varphi _3, \varphi _4)^\mathrm{T}. \end{aligned}$$

Note that \(\varphi \) acts as a rotation by \(\theta \) in the (xy) and \((\dot{x},\dot{y})\) coordinate planes independently. Now, suppose that \(\mathbf {x}: \mathbb {R}\rightarrow \mathbb {R}^4\) is a trajectory for f, then \(\tilde{\mathbf {x}} = \varphi \circ \mathbf {x}\) is also a trajectory for f. Moreover, if \(\mathbf {x} \subset W^{s,u}(\mathcal {L}_i)\) for \(i \in \{0,4,5,6\}\), then \(\tilde{\mathbf {x}} \subset W^{s,u}(L_{\sigma (i)})\), where \(\sigma \) is the permutation given by \(\sigma = (0)(4,5,6)\).

Proof

Let \(\hat{x} = (x, \dot{x},y,\dot{y}) \in \mathbb {R}^4\) and suppose \(\mathbf {x}\) is the trajectory through \(\hat{x}\) satisfying \(\mathbf {x}(0) = \hat{x}\). By definition, \(\tilde{\mathbf {x}}(0) = \varphi (\mathbf {x}(0)) = \varphi (\hat{x})\), and we note that \(\tilde{\mathbf {x}}\) will parameterize a trajectory for f if and only if \(\tilde{\mathbf {x}}(t)\) is tangent to \(f(\tilde{\mathbf {x}}(t))\) for all \(t \in \mathbb {R}\). Thus, it clearly suffices to prove that \(f \circ \varphi = \varphi \circ f\) holds for any \(\hat{x}\) on \(\mathbb {R}^4\).

With this in mind, define the planar rotation \(\eta : \mathbb {R}^2 \rightarrow \mathbb {R}^2\) by

$$\begin{aligned} \eta (x,y) = \left( \begin{array}{cc} \cos (\theta ) &{}\quad - \sin (\theta ) \\ \sin (\theta ) &{}\quad \cos (\theta ) \\ \end{array} \right) \left( \begin{array}{c} x \\ y \end{array} \right) = \left( \begin{array}{c} \eta _1(x,y) \\ \eta _2(x,y) \end{array} \right) , \end{aligned}$$

Recall that for the symmetric mass case, we have equal masses given by \(m_1 = m_2 = m_3 = \frac{1}{3}\). Set \(m = \frac{1}{3}\), then the primaries are located at \(P_1,P_2,P_3\) given by

$$\begin{aligned} P_1 = \left( -\frac{\sqrt{3}}{3}, 0 \right) \quad P_2 = \left( \frac{\sqrt{3}}{6}, -\frac{1}{2} \right) \quad P_3 = \left( \frac{\sqrt{3}}{6}, \frac{1}{2} \right) \end{aligned}$$

and note that \(\left| \left| P_1 \right| \right| = \left| \left| P_2 \right| \right| = \left| \left| P_3 \right| \right| = \frac{1}{\sqrt{3}}\). Moreover, \(P_1,P_2,P_3\) are vertices of an equilateral triangle and a direct computation shows that \(\eta \) acts as a cyclic permutation on the primary bodies in configuration space given by the cycle \(\pi = (1,2,3)\). Recalling that \(r_i(x,y) = \sqrt{(x-x_i)^2 + (y-y_i)^2} = \left| \left| (x,y) - P_i \right| \right| \), it follows from this symmetry that for \(i \in \{1,2,3\}\) we have

$$\begin{aligned} r_i \circ \eta (x,y) = \left| \left| \eta (x,y) - P_i \right| \right| = \left| \left| (x,y) - P_{\pi ^{-1}(i)} \right| \right| = r_{\pi ^{-1}(i)}. \end{aligned}$$
(17)

Now, we recall that in the symmetric case, the CRFBP vector field is given by

$$\begin{aligned} f(x,\dot{x},y,\dot{y}) = \left( \begin{array}{c} \dot{x} \\ 2\dot{y} + x - \frac{1}{3}\sum _{i=1}^{3} \frac{x - x_i}{r_i} \\ \dot{y} \\ -2\dot{x} + y - \frac{1}{3}\sum _{i=1}^{3} \frac{y - y_i}{r_i} \end{array} \right) , \end{aligned}$$

which we write in scalar coordinates as \(f = \left( f_1,f_2,f_3,f_4\right) \). Similarly, write \(\varphi = \left( \varphi _1,\varphi _2,\varphi _3,\varphi _4 \right) \) and we note that \((\varphi _1(\hat{x}),\varphi _3(\hat{x})) = \eta (x,y)\). Now, we check that \(f_i \circ \varphi = \varphi _i \circ f\) holds for each \(i \in \{1,2,3,4\}\). For \(i =1\), we have the direction computation

$$\begin{aligned} \varphi _1 \circ f \left( \hat{x}\right) = \dot{x} \cos (\theta ) - \dot{y} \sin (\theta ) = f_1 \circ \varphi \left( \hat{x}\right) . \end{aligned}$$

Now, for \(i = 2\) we first compute each expression

$$\begin{aligned} \varphi _2 \circ f \left( \hat{x}\right)&= \left( 2 \dot{y} + x - \frac{1}{3}\sum _{i=1}^{3} \frac{x - x_i}{r_i(x,y)}\right) \cos (\theta ) - \left( -2\dot{x} + y - \frac{1}{3} \sum _{i=1}^{3} \frac{y - y_i}{r_i(x,y)}\right) \sin (\theta ) \\ f_2 \circ \varphi \left( \hat{x}\right)&= 2(\dot{x} \sin (\theta ) + \dot{y} \cos (\theta )) + x \cos (\theta ) - y \sin (\theta ) - \frac{1}{3} \sum _{i = 1}^{3} \frac{\eta _1(x,y) - x_i}{r_i \circ \eta (x,y)}. \end{aligned}$$

After canceling like terms in each expression, we are left to prove the following equality

$$\begin{aligned} \sum _{i = 1}^{3} \frac{\eta _1(x,y) - x_i}{r_i \circ \eta (x,y)} = \cos (\theta ) \sum _{i = 1}^{3} \frac{x - x_i}{r_i(x,y)} - \sin (\theta ) \sum _{i=1}^{3} \frac{y - y_i}{r_i(x,y)}. \end{aligned}$$
(18)

Applying the result from (17) to the left side, we have

$$\begin{aligned} \sum _{i = 1}^{3} \frac{\eta _1(x,y) - x_i}{r_{\pi ^{-1}(i)}} = \frac{\eta _1(x,y) - x_1}{r_3(x,y)} + \frac{\eta _1(x,y) - x_2}{r_1(x,y)} + \frac{\eta _1(x,y) - x_3}{r_2(x,y)}, \end{aligned}$$

so that for each \(i \in \{1,2,3\}\), the numerator for \(r_i\) is given by \(\eta _1(x,y) - x_{\pi (i)}\). Now, we compute the numerators for \(r_i(x,y)\) on the right-hand side as

$$\begin{aligned} \cos (\theta )(x-x_i) - \sin (\theta )(y-y_i) = \eta _1(x,y) - \eta _1(x_i,y_i) = \eta _1(x,y) - x_{\pi (i)}. \end{aligned}$$

We conclude that the numerators for each \(r_i\) are equal, and therefore, the equality in (18) holds which proves that \(\varphi _2 \circ f = f_2 \circ \varphi \). The proofs for the \(i = 3,4\) cases are computationally similar to the corresponding proofs for \(i = 1,2\) which concludes the proof that \(f \circ \varphi = \varphi \circ f\), or equivalently, \(\tilde{\mathbf {x}}\) is a trajectory for f.

To prove the second claim, fix \(i \in \{0,4,5,6\}\) and suppose \(\mathbf {x}(t) \rightarrow L_i\) as \(t \rightarrow \infty \) implying that \(\mathbf {x} \subset W^s(L_i)\). Let \(\tilde{\mathbf {x}} = \varphi (\mathbf {x})\), and note that \(L_i\) is an equilibrium solution for f implying that \(\mathbf {x}_{2,4}(t) \rightarrow 0\). Noting that \(\eta \) is a unitary operator, it follows that \(\tilde{\mathbf {x}}_{2,4}(t) \rightarrow 0\) as well. Moreover, \(\varphi \) is a dynamical conjugacy implying that in configuration space we have

$$\begin{aligned} \lim \limits _{t \rightarrow \infty } \tilde{\mathbf {x}}_{1,3}(t) = \lim \limits _{t \rightarrow \infty } \eta \left( x(t),y(t)\right) = \eta (L_i). \end{aligned}$$

Taken together it follows that \(\eta (L_i)\) is again an equilibrium solution for f. Thus, \(\eta \) acts as a permutation on equilibria. A direct computation shows that \(\eta (L_i) = L_{\sigma (i)}\) where \(\sigma \) is the permutation given by \(\sigma = (0)(4,5,6)\). The preceding argument applies equally well to the unstable manifold of each equilibrium with \(t \rightarrow -\infty \) which completes the proof of the second claim. \(\square \)

Power series manipulation, automatic differentiation, and the radial gradient

Our local invariant manifold computations are based on formal power series manipulations. The main technical challenge is to compute \(f \circ P\) with P an arbitrary power series and f the vector field for the CRFBP. As usual in gravitational N body problems, the nonlinearity contains terms raised to the minus three halves power.

Consider two formal power series \(P, Q :\mathbb {C}^2 \rightarrow \mathbb {C}\) given by

$$\begin{aligned} P(z_1, z_2) = \sum _{m=0}^\infty \sum _{n=0}^\infty a_{m,n} z_1^m z_2^n, \quad \quad \text{ and } \quad \quad Q(z_1, z_2) = \sum _{m=0}^\infty \sum _{n=0}^\infty b_{m,n} z_1^m z_2^n, \end{aligned}$$

where \(a_{m,n}, b_{m,n} \in \mathbb {C}\) for all \((m,n) \in \mathbb {N}^2\). The collection of all formal power series forms a complex vector space, so that for any \(\alpha , \beta \in \mathbb {C}\) we have that

$$\begin{aligned} (\alpha P+ \beta Q)(z_1, z_2) = \sum _{m=0}^\infty \sum _{n=0}^\infty \left( \alpha a_{m,n} + \beta b_{m,n}\right) z_1^m z_2^n. \end{aligned}$$

The collection becomes an algebra when endowed with the Cauchy product

$$\begin{aligned} (P \cdot Q)(z_1, z_2) = \sum _{m=0}^\infty \sum _{n=0}^\infty \left( \sum _{j=0}^m \sum _{k=0}^n a_{m-j,n-k} b_{j k} \right) \, z_1^m z_2^n. \end{aligned}$$
(19)

We evaluate elementary functions of formal power series using a technique called automatic differentiation by many authors. Suppose, for example, we are given a formal series

$$\begin{aligned} P(z_1, z_2) = \sum _{m=0}^\infty \sum _{n=0}^\infty p_{m,n} z_1^m z_2^n, \end{aligned}$$

with \(p_{0,0} \ne 0\). We seek the formal series coefficients \(q_{m,n}\) of the function

$$\begin{aligned} Q(z_1, z_2) = \sum _{m=0}^\infty \sum _{n=0}^\infty q_{m,n} z_1^m z_2^n = P(z_1, z_2)^{\alpha }, \quad \quad \quad \alpha \in \mathbb {R}. \end{aligned}$$

Our approach follows the discussion given by Haro et al. (2016). Consider the first-order partial differential operator

$$\begin{aligned} \nabla _{\mathrm{rad}} P(z_1, z_2) = \nabla P(z_1, z_2) \left( \begin{array}{c} z_1 \\ z_2 \end{array} \right) = z_1 \frac{\partial }{\partial z_1} P(z_1, z_2) + z_2 \frac{\partial }{\partial z_2} P(z_1, z_2), \end{aligned}$$

which is referred to as the radial gradient of P. Evaluating on the level of formal power series leads to

$$\begin{aligned} \nabla _{\mathrm{rad}} P(z_1, z_2) = \sum _{m=0}^\infty \sum _{n=0}^\infty (m+n) p_{m,n} z_1^m z_2^n. \end{aligned}$$

Observe that

$$\begin{aligned} \nabla _{\mathrm{rad}} Q(z_1, z_2)&= \nabla Q(z_1, z_2) \left( \begin{array}{c} z_1 \\ z_2 \end{array} \right) \\&= \nabla P(z_1, z_2)^\alpha \left( \begin{array}{c} z_1 \\ z_2 \end{array} \right) \\&= \alpha P(z_1, z_2)^{\alpha - 1} \nabla P(z_1, z_2) \left( \begin{array}{c} z_1 \\ z_2 \end{array} \right) . \end{aligned}$$

Multiplying both sides of the equation by P, we obtain

$$\begin{aligned} P(z_1, z_2) \nabla Q(z_1, z_2) \left( \begin{array}{c} z_1 \\ z_2 \end{array} \right) = \alpha Q(z_1, z_2) \nabla P(z_1, z_2) \left( \begin{array}{c} z_1 \\ z_2 \end{array} \right) . \end{aligned}$$
(20)

Here the fractional power is replaced by operations involving only differentiation and multiplication. This is the virtue of the radial gradient in automatic differentiation schemes. Plugging the power series expansions into Eq. (20) leads to

$$\begin{aligned}&\left( \sum _{m=0}^\infty \sum _{n=0}^\infty p_{m,n} z_1^m z_2^n \right) \left( \sum _{m=0}^\infty \sum _{n=0}^\infty (m+n) q_{m,n} z_1^m z_2^n \right) \\&\quad =\left( \sum _{m=0}^\infty \sum _{n=0}^\infty \alpha q_{m,n} z_1^m z_2^n \right) \left( \sum _{m=0}^\infty \sum _{n=0}^\infty (m+n) p_{m,n} z_1^m z_2^n \right) , \end{aligned}$$

and taking Cauchy products gives

$$\begin{aligned}&\sum _{m=0}^\infty \sum _{n=0}^\infty \sum _{j=0}^m \sum _{k=0}^n (j+k) p_{m-j, n-k} q_{j,k} z_1^m z_2^n\\&\quad = \sum _{m=0}^\infty \sum _{n=0}^\infty \sum _{j=0}^m \sum _{k=0}^n \alpha (j+k) q_{m-j, n-k} p_{j,k} z_1^m z_2^n. \end{aligned}$$

Match like powers to get

$$\begin{aligned} \sum _{j=0}^m \sum _{k=0}^n (j+k) p_{m-j, n-k} q_{j,k} = \sum _{j=0}^m \sum _{k=0}^n \alpha (j+k) q_{m-j, n-k} p_{j,k}, \end{aligned}$$

or

$$\begin{aligned}&(m+n) p_{0,0} q_{m,n} + \sum _{j=0}^m \sum _{k=0}^n \hat{\delta }_{j,k}^{m,n} (j+k) p_{m-j, n-k} q_{j,k}\\&\quad = \alpha (m+n) q_{0,0} p_{m,n} + \sum _{j=0}^m \sum _{k=0}^n \hat{\delta }_{j,k}^{m,n} \alpha (j+k) q_{m-j, n-k} p_{j,k}, \end{aligned}$$

for \(m + n \ge 1\). Here

$$\begin{aligned} \hat{\delta }_{j,k}^{m,n} := {\left\{ \begin{array}{ll} 0 &{}\quad \text{ if } \,\,j = m \text{ and } k = n \\ 0 &{}\quad \text{ if } \,\,j = 0 \text{ and } k = 0 \\ 1 &{}\quad \text{ otherwise } \end{array}\right. }. \end{aligned}$$

The \(\hat{\delta }\) appears to remind us that terms of order (mn) are extracted from the sum. Isolating \(q_{m,n}\) gives

$$\begin{aligned} q_{m,n} = \alpha p_{0,0}^{\alpha -1} p_{m,n} + \frac{1}{(m+n) p_{0,0}} \sum _{j=0}^m \sum _{k=0}^n \hat{\delta }_{j,k}^{m,n} (j+k) \left( \alpha q_{m-j, n-k} p_{j,k} - p_{m-j, n-k} q_{j,k} \right) , \end{aligned}$$
(21)

for \(m + n \ge 1\). Note that \(q_{0,0} = p_{0,0}^{\alpha } \ne 0\) by hypothesis, so that the coefficients \(q_{m,n}\) are formally well defined to all orders. Using the recursion given in Eq. (21) we can compute the formal series coefficients for Q for the cost of a Cauchy product. This allows us to compute power series representations for the nonlinear terms in f(P) and Df(P) in the CRFBP. Another approach which converts the CRFB field to a higher-dimensional polynomial field in discussed in Kepley and Mireles James (2018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kepley, S., Mireles James, J.D. Homoclinic dynamics in a restricted four-body problem: transverse connections for the saddle-focus equilibrium solution set. Celest Mech Dyn Astr 131, 13 (2019). https://doi.org/10.1007/s10569-019-9890-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-019-9890-8

Keywords

Mathematics Subject Classification

Navigation