Skip to main content
Log in

Revealing the basins of convergence in the planar equilateral restricted four-body problem

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The planar equilateral restricted four-body problem where two of the primaries have equal masses is used in order to determine the Newton-Raphson basins of convergence associated with the equilibrium points. The parametric variation of the position of the libration points is monitored when the value of the mass parameter \(m_{3}\) varies in predefined intervals. The regions on the configuration \((x,y)\) plane occupied by the basins of attraction are revealed using the multivariate version of the Newton-Raphson iterative scheme. The correlations between the attracting domains of the equilibrium points and the corresponding number of iterations needed for obtaining the desired accuracy are also illustrated. We perform a thorough and systematic numerical investigation by demonstrating how the dynamical parameter \(m_{3}\) influences the shape, the geometry and the degree of fractality of the converging regions. Our numerical outcomes strongly indicate that the mass parameter is indeed one of the most influential factors in this dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. It should be clarified and clearly emphasized that the Newton-Raphson basins of convergence should not be mistaken, by no means, with the classical basins of attraction which exist in dissipative systems. The difference between the Newton-Raphson basins of convergence and the basins of attraction in dissipative systems is huge. This is true because the attraction in the first case is just a numerical artifact of the Newton-Raphson iterative method, while in dissipative systems the attraction is a real dynamical phenomenon, observed through the numerical integration of the initial conditions.

  2. Needless to say the initial conditions corresponding to the three centers \((P_{1}, P_{2}, P_{3})\) of the primaries are excluded from the grid because for these values the distances \(r_{i}\), \(i = 1,2,3\) to the primaries are zero and therefore several terms of the formulae (11) become singular.

  3. When we state that a domain displays fractal structure we simply mean that it has a fractal-like geometry however, without conducting, at least for now, any specific calculations for computing the fractal dimensions as in Aguirre et al. (2009).

  4. By the term “tails” of the distributions we refer to the right-hand side of the histograms, that is, for \(N > N^{*}\).

References

  • Aguirre, J., Vallejo, J.C., Sanjuán, M.A.F.: Wada basins and chaotic invariant sets in the Hénon-Heiles system. Phys. Rev. E 64, 066208 (2001)

    Article  ADS  Google Scholar 

  • Aguirre, J., Viana, R.L., Sanjuán, M.A.F.: Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81, 333–386 (2009)

    Article  ADS  Google Scholar 

  • Álvarez-Ramírez, M., Barrabés, E.: Transport orbits in an equilateral restricted four-body problem. Celest. Mech. Dyn. Astron. 121, 191–210 (2015)

    Article  MathSciNet  Google Scholar 

  • Álvarez-Ramírez, M., Skea, J.E.F., Stuchi, T.J.: Nonlinear stability analysis in a equilateral restricted four-body problem. Astrophys. Space Sci. 358, 3 (2015)

    Article  ADS  Google Scholar 

  • Baltagiannis, A.N., Papadakis, K.E.: Equilibrium points and their stability in the restricted four-body problem. Int. J. Bifurc. Chaos 21, 2179–2193 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  • Baltagiannis, A.N., Papadakis, K.E.: Families of periodic orbits in the restricted four-body problem. Astrophys. Space Sci. 336, 357–367 (2011b)

    Article  ADS  MATH  Google Scholar 

  • Baltagiannis, A.N., Papadakis, K.E.: Periodic solutions in the Sun-Jupiter-Trojan Asteroid-Spacecraft system. Planet. Space Sci. 75, 148–157 (2013)

    Article  ADS  Google Scholar 

  • Burgos-García, J., Delgado, J.: Periodic orbits in the restricted four-body problem with two equal masses. Astrophys. Space Sci. 345, 247–263 (2013)

    Article  ADS  MATH  Google Scholar 

  • Ceccaroni, M., Biggs, J.: Extension of low-thrust propulsion to the autonomous coplanar circular restricted four body problem with application to future Trojan Asteroid missions. In: 61st International Astronautical Congress, IAC 2010, Prague, Czech Republic (2010)

    Google Scholar 

  • Croustalloudi, M., Kalvouridis, T.: Attracting domains in ring-type N-body formations. Planet. Space Sci. 55, 53–69 (2007)

    Article  ADS  Google Scholar 

  • Croustalloudi, M.N., Kalvouridis, T.J.: The restricted \(2+2\) body problem: parametric variation of the equilibrium states of the minor bodies and their attracting regions. Astron. Astrophys. (2013), article ID 281849

  • de Almeida Prado, A.F.B.: Numerical and analytical study of the gravitational capture in the bicircular problem. Adv. Space Res. 36, 578–584 (2005)

    Article  ADS  Google Scholar 

  • Douskos, C.N.: Collinear equilibrium points of Hill’s problem with radiation and oblateness and their fractal basins of attraction. Astrophys. Space Sci. 326, 263–271 (2010)

    Article  ADS  MATH  Google Scholar 

  • Gousidou-Koutita, M., Kalvouridis, T.J.: On the efficiency of Newton and Broyden numerical methods in the investigation of the regular polygon problem of \((N + 1)\) bodies. Appl. Math. Comput. 212, 100–112 (2009)

    MathSciNet  MATH  Google Scholar 

  • Hadjidemetriou, J.D.: The restricted planetary 4-body problem. Celest. Mech. 21, 63–71 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jorba, A.: On practical stability regions for the motion of a small particle close to the equilateral points of the real Earth-Moon system. In: Proceedings of the 3rd International Symposium (HAMSYS-98) Heldat Pátzcuaro. World Scientific Monograph Series in Mathematics, vol. 6, pp. 197–213. World Scientific, River Edge (2000)

    Google Scholar 

  • Kalvouridis, T.J.: On some new aspects of the photo-gravitational Copenhagen problem. Astrophys. Space Sci. 317, 107–117 (2008)

    Article  ADS  MATH  Google Scholar 

  • Kalvouridis, T.J., Gousidou-Koutita, M.Ch.: Basins of attraction in the Copenhagen problem where the primaries are magnetic dipoles. Appl. Math. 3, 541–548 (2012)

    Article  Google Scholar 

  • Kloppenborg, B., Stencel, R., Monnier, J.D., Schaefer, G., Zhao, M., Baron, F., McAlister, H., et al.: Infrared images of the transiting disk in the epsilon Aurigae system. Nature 464, 870–872 (2010)

    Article  ADS  Google Scholar 

  • Kumari, R., Kushvah, B.S.: Stability regions of equilibrium points in restricted four-body problem with oblateness effects. Astrophys. Space Sci. 349, 693–704 (2014)

    Article  ADS  Google Scholar 

  • Leandro, E.S.G.: On the central configurations of the planar restricted four-body problem. J. Differ. Equ. 226, 323–351 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Machuy, A.L., de Almeida Prado, A.F.B., Stuchi, T.J.: Numerical study of the time required for the gravitational capture in the bi-circular four-body problem. Adv. Space Res. 40, 118–124 (2007)

    Article  ADS  Google Scholar 

  • Marchal, C.: The Three-Body Problem. Elsevier, New York (1990)

    MATH  Google Scholar 

  • Melita, M.D., Licandro, J., Jones, D.C., Williams, I.P.: Physical properties and orbital stability of the Trojan asteroids. Icarus 195, 686–697 (2008)

    Article  ADS  Google Scholar 

  • Michalodimitrakis, M.: The circular restricted four-body problem. Astrophys. Space Sci. 75, 289–305 (1981)

    Article  ADS  Google Scholar 

  • Moulton, F.R.: On a class of particular solutions of the problem of four bodies. Trans. Am. Math. Soc. 1, 17–29 (1900)

    Article  MathSciNet  MATH  Google Scholar 

  • Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  • Papadakis, K.E.: Asymptotic orbits in the restricted four-body problem. Planet. Space Sci. 55, 1368–1379 (2007)

    Article  ADS  Google Scholar 

  • Papadouris, J.P., Papadakis, K.E.: Equilibrium points in the restricted four-body problem. Astrophys. Space Sci. 344, 21–38 (2013)

    Article  ADS  MATH  Google Scholar 

  • Robutel, P., Gabern, F.: The resonant structure of Jupiter’s Trojan asteroids-I. Long-term stability and diffusion. Mon. Not. R. Astron. Soc. 372, 1463–1482 (2006)

    Article  ADS  Google Scholar 

  • Schwarz, R., Süli, À., Dvorac, R., Pilat-Lohinger, E.: Stability of Trojan planets in multi-planetary systems. Celest. Mech. Dyn. Astron. 104, 69–84 (2009a)

    Article  ADS  MATH  Google Scholar 

  • Schwarz, R., Süli, À., Dvorac, R.: Dynamics of possible Trojan planets in binary systems. Mon. Not. R. Astron. Soc. 398, 2085–2090 (2009b)

    Article  ADS  Google Scholar 

  • Simó, C.: Relative equilibrium solutions in the four-body problem. Celest. Mech. 18, 165–184 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Simó, C., Gómez, G., Jorba, A., Masdemont, J.: The bicircular model near the triangular libration points of the RTBP. In: From Newton to Chaos, Cortina d’Ampezzo, 1993. NATO Advanced Science Institutes Series B: Physics, vol. 336, pp. 343–370. Plenum, New York (1995)

    Chapter  Google Scholar 

  • Singh, J., Vincent, A.E.: Out-of-plane equilibrium points in the photogravitational restricted four-body problem. Astrophys. Space Sci. 359, 38 (2015)

    Article  ADS  Google Scholar 

  • Singh, J., Vincent, A.E.: Equilibrium points in the restricted four-body problem with radiation pressure. Few-Body Syst. 57, 83–91 (2016)

    Article  ADS  Google Scholar 

  • Soulis, P.S., Papadakis, K.E., Bountis, T.: Periodic orbits and bifurcations in the Sitnikov four-body problem. Celest. Mech. Dyn. Astron. 100, 251–266 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Szebehely, V.: Theory of Orbits. Academic Press, New York (1967)

    Google Scholar 

  • Van Hamme, W., Wilson, R.E.: The restricted four-body problem and epsilon Aurigae. Astrophys. J. 306, L33–L36 (1986)

    Article  ADS  Google Scholar 

  • Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003)

    MATH  Google Scholar 

  • Zotos, E.E.: Fractal basins of attraction in the planar circular restricted three-body problem with oblateness and radiation pressure. Astrophys. Space Sci. 361 (2016a), article ID 181, 17 pp.

  • Zotos, E.E.: Fractal basin boundaries and escape dynamics in a multiwell potential. Nonlinear Dyn. 85, 1613–1633 (2016b)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to express my warmest thanks to the anonymous referee for the careful reading of the manuscript and for all the apt suggestions and comments which allowed us to improve both the quality and the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euaggelos E. Zotos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotos, E.E. Revealing the basins of convergence in the planar equilateral restricted four-body problem. Astrophys Space Sci 362, 2 (2017). https://doi.org/10.1007/s10509-016-2973-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2973-z

Keywords

Navigation