Skip to main content
Log in

On the exactness of estimates for irregularly structured bodies of the general term of Laplace series

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The main form of the representation of a gravitational potential V for a celestial body T in outer space is the Laplace series in solid spherical harmonics \((R/r)^{n+1}Y_n(\theta ,\lambda )\) with R being the radius of the enveloping T sphere. The surface harmonic \(Y_n\) satisfies the inequality

$$\begin{aligned} \langle Y_n\rangle < Cn^{-\sigma }. \end{aligned}$$

The angular brackets mark the maximum of a function’s modulus over a unit sphere. For bodies with an irregular structure \(\sigma = 5/2\), and this value cannot be increased generally. However, a class of irregular bodies (smooth bodies with peaked mountains) has been found recently in which \(\sigma = 3\). In this paper, we will prove the exactness of this estimate, showing that a body belonging to the above class does exist and

$$\begin{aligned} 0<\varlimsup n^3\langle Y_n\rangle <\infty \end{aligned}$$

for it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antonov, V.A., Timoshkova, E.I., Kholshevnikov, K.V.: Introduction to the Theory of Newtonian Potential. Nauka, Moscow (1988). (in Russian)

    MATH  Google Scholar 

  • Antonov, V.A., Kholshevnikov, K.V., Shaidulin, V.Sh.: Estimating the derivative of the Legendre polynomial. Vestnik St. Petersb. Univ. Math. 43(4), 191–197 (2010)

  • Caputo, M.: The Gravity Field of the Earth from Classical and Modern Methods. Academic Press, New York (1967)

    Google Scholar 

  • Chuikova, N.A.: On convergence of series in spherical harmonics representing the outer potential on the physical surface of a planet. Isvestia Vusov Ser. Geod. 4, 53–54 (1980). (in Russian)

    Google Scholar 

  • Hobson, E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, Cambridge (1931)

    MATH  Google Scholar 

  • Kaula, W.M.: An Introduction to Planetary Physics. Wiley, New York (1968)

    Google Scholar 

  • Kholchevnikov, C.: Le développement du potentiel dans le cas d’une densité analytique. Celest. Mech. 3, 232–240 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kholshevnikov, C.: On convergence of an asymmetrical body potential expansion in spherical harmonics. Celest. Mech. 16, 45–60 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kholshevnikov, K.V., Shaidulin, V.Sh.: Estimate for the decay rate of the general term of the paplace series for the geopotential. Solar Syst. Res. 45, 53–59 (2011)

  • Kholshevnikov, K.V., Shaidulin, V.Sh.: On properties of integrals of the Legendre polynomial. Vestnik St. Petersb. Univ. Math. 47, 28–38 (2014)

  • Kholshevnikov, K.V., Shaidulin, V.Sh.: Existence of a class of irregular bodies with a higher convergence rate of Laplace series for the gravitational potential. Celest. Mech. Dyn. Astron. 122, 391–403 (2015)

  • Kholshevnikov, K.V., Shaidulin, V.Sh.: Asymptotic behaviour of integrals of Legendre polynomial and their sums. Vestnik St. Petersb. Univ. Math. 48, 233–240 (2015)

  • Moritz, H.: On the convergence of the spherical harmonic expansion for the geopotential at the Earth’s surface. Boll. Geod. Sci. Affini 37, 363–381 (1978)

    ADS  Google Scholar 

  • Nikolsky, S.M.: A Course of Mathematical Analysis, vol. 1. Mir Publishers, Moscow (1977)

    Google Scholar 

  • Petrovskaya, M.S.: Representation of the Earth potential in form of the convergent series. Boll. Geod. Sci. Affini 41, 177–184 (1982)

    Google Scholar 

  • Shaidulin, V.Sh.: Laplace series for the potential of a spherical sector. Vestnik St. Petersb. Univ. Ser. 1 43(2), 144–151 (2010) (in Russian)

  • Yarov-Yarovoi, M.S.: On the force-function of the attraction of a planet and its satellite. In: Subbotin, M.F. (ed.) Problems of Motion of Artificial Celestial Bodies. Academy of Science USSR Press, Moscow (1963) (in Russian)

Download references

Acknowledgements

We thank a student Lea Robinson for valuable remarks. This work is supported by the Russian Foundation for Basic Research, Grant 14-02-00804, by Saint Petersburg State University, research Grant 6.37.341.2015, and by Tomsk State University Foundation named after D.I. Mendeleev, Grant 8.1.54.2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin V. Kholshevnikov.

Appendices

Appendix 1: Connection between Maclaurin coefficients of two functions

  1. 1a.

    Let

    $$\begin{aligned} f(z)= & {} \sum _{n=0}^{\infty } a_nz^{n+1},\qquad a_n=\frac{A_n}{(n+1)^\sigma }\gamma ^n, \qquad |A_n|\leqslant A, \nonumber \\ g(z)= & {} \frac{f(z)}{1-\beta z}=\sum _{n=0}^{\infty } b_nz^{n+1},\qquad b_n=\sum _{k=0}^{n} a_k\beta ^{n-k} :=\frac{B_n}{(n+1)^\sigma }\gamma ^n, \nonumber \\ \sigma\in & {} {\mathbb {R}},\quad 0<\beta <\gamma . \end{aligned}$$
    (47)

    Then

    $$\begin{aligned} -\infty<A_*=\varliminf A_n\leqslant \varlimsup A_n=A^*< \infty , \end{aligned}$$
    (48)

    the sequence \(B_n\) is bounded

    $$\begin{aligned} |B_n|<\frac{A}{1-\delta }\times \left\{ \begin{array}{ll} 1,&{}\quad \text {if}\quad \sigma \leqslant 0,\\ 2^\sigma +\frac{1-\delta }{2\sqrt{\delta }} \left[ \frac{2(\sigma +1)}{e\ln (1/\delta )}\right] ^{\sigma +1}, &{}\quad \text {if}\quad \sigma > 0, \end{array}\right. \end{aligned}$$
    (49)

    and relations

    $$\begin{aligned} B_*=\varliminf B_n\geqslant \frac{A_*}{1-\delta }\,,\quad B^*=\varlimsup B_n\leqslant \frac{A^*}{1-\delta } \quad \text {with} \quad \delta =\frac{\beta }{\gamma }<1 \end{aligned}$$
    (50)

    are fulfilled. In particular, if the limit \(\lim A_n=A^*\) exists, then the limit \(\lim B_n=B^*\) exists also, and

    $$\begin{aligned} B^*=\frac{A^*}{1-\delta }. \end{aligned}$$
    (51)

    Proof Relations (48) represent a trivial corollary of the boundedness of \(A_n\). It follows from (47) that

    $$\begin{aligned} B_n=\sum _{k=0}^{n} \left( \frac{n+1}{k+1}\right) ^\sigma \delta ^{n-k}A_k\,, \qquad \frac{|B_n|}{A}\leqslant \sum _{k=0}^{n} \left( \frac{n+1}{k+1}\right) ^\sigma \delta ^{n-k}:=u_n. \end{aligned}$$
    (52)

    If \(\sigma \leqslant 0\), then \(|B_n|< A(1-\delta )^{-1}\). Let \(\sigma >0\). The last sum can be decomposed as

    $$\begin{aligned} u_n=u_{1n}+u_{2n} \end{aligned}$$

    with

    $$\begin{aligned}&u_{1n}:=\sum _{k=0}^{\lfloor n/2 \rfloor }\left( \frac{n+1}{k+1}\right) ^\sigma \delta ^{n-k}< (n+1)^\sigma \delta ^{\lceil n/2 \rceil } u_{3n}\,,\qquad u_{3n}=\sum _{k=0}^{\lfloor n/2 \rfloor } \frac{1}{(k+1)^\sigma }\,; \\&u_{2n}:= \sum _{k=\lfloor n/2 \rfloor +1}^n\left( \frac{n+1}{k+1}\right) ^\sigma \delta ^{n-k}< 2^\sigma \sum _{m=0}^{\infty }\delta ^{m}=\frac{2^\sigma }{1-\delta }. \end{aligned}$$

    If n is even and positive, then

    $$\begin{aligned} u_{3n}=1+\frac{1}{2^\sigma }+\cdots +\frac{1}{(1+n/2)^\sigma }<\frac{n+1}{2}. \end{aligned}$$

    It can be shown by induction. If n is odd, then the number of terms in the sum equals to \((n+1)/2\), and we arrive to the same inequality. Hence,

    $$\begin{aligned} 2u_{1n}<(n+1)^{\sigma +1} \delta ^{n/2}. \end{aligned}$$

    The right hand side has a maximum at

    $$\begin{aligned} n=\frac{2(\sigma +1)}{\ln (1/\delta )}-1. \end{aligned}$$

    So

    $$\begin{aligned} 2u_{1n}<\frac{1}{\sqrt{\delta }}\left[ \frac{2(\sigma +1)}{e\ln (1/\delta )}\right] ^{\sigma +1}. \end{aligned}$$

    The validity of (49) is proved for \(n>0\). At \(n=0\) the inequality (49) is trivial. Equalities

    $$\begin{aligned} b_{n+1}=a_{n+1}+\beta b_{n}\,,\qquad B_{n+1}=A_{n+1}+\delta \left( \frac{n+2}{n+1}\right) ^\sigma B_n \end{aligned}$$
    (53)

    follow from (47). The second formula (53) implies (Nikolsky 1977, section 3.7) that

    $$\begin{aligned} B_*\geqslant A_* +\delta B_*\,,\qquad B^*\leqslant A^* +\delta B^*. \end{aligned}$$
    (54)

    Relations (50) arise from (54). In case \(A_*=A^*\) the equality (51) follows from (50).

  2. 1b.

    Let relations (47) be true except the last one, and now \(\beta <0\), \(|\beta |<\gamma \).

    Then inequalities (49) remain valid after replacing \(\delta \) by \(|\delta |\). Relations (53) are valid too. However, we get

    $$\begin{aligned} B_*\geqslant \frac{A_*-|\delta | A^*}{1-\delta ^2}\,,\qquad B^*\leqslant \frac{A^*-|\delta | A_*}{1-\delta ^2} \end{aligned}$$
    (55)

    instead of (50). If the limit \(\lim A_n=A^*\) exists, then the limit \(\lim B_n=B^*\) exists also, and the equality (51) holds true.

    Inequality (55) only needs a proof. Negativeness of \(\delta \) implies \(\varliminf \{\delta B_n\}=\delta \varlimsup B_n\), \(\varlimsup \{\delta B_n\}=\delta \varliminf B_n\), see (Nikolsky 1977, section 3.7). We have now

    $$\begin{aligned} B_*\geqslant A_* -|\delta | B^*\,,\qquad B^*\leqslant A^* -|\delta | B_*\,, \end{aligned}$$
    (56)

    instead of (54). Inequalities (55) arise from (56).

  3. 1c.

    Let f(z) be holomorphic in the circle \(|z|<1/|\beta |\), \(\beta \ne 0\), and the series

    $$\begin{aligned} f(z)=\sum _{n=0}^{\infty } a_n\beta ^nz^n \end{aligned}$$

    converge (perhaps conditionally) at \(z=1/\beta \).

    Then Maclaurin coefficients of the function

    $$\begin{aligned} g(z)=\frac{f(1/\beta )-f(z)}{1-\beta z}=\sum _{n=0}^{\infty } b_n\beta ^nz^n \end{aligned}$$

    are equal to

    $$\begin{aligned} b_n=f(1/\beta )-\sum _{m=0}^{n} a_m=\sum _{m=n+1}^{\infty } a_m. \end{aligned}$$
    (57)

    Proof Evidently,

    $$\begin{aligned} g(z)=\sum _{k=0}^{\infty }\beta ^kz^k\left[ f(1/\beta )- \sum _{m=0}^{\infty }a_m\beta ^mz^m\right] \end{aligned}$$

    in the circle \(|z|<1/|\beta |\). The left equality (57) follows from it. The right equality (57) arises from the left one taking into account the convergence of the last series.

  4. 1d.

    Let

    $$\begin{aligned} f(z)= & {} \sum _{n=0}^{\infty } a_nz^{n+1},\qquad a_n=A_n\gamma ^n, \end{aligned}$$
    (58)
    $$\begin{aligned} g(z)= & {} \frac{f(z)}{1-\beta z}=\sum _{n=0}^{\infty } b_nz^{n+1},\qquad b_n=\sum _{k=0}^{n} a_k\beta ^{n-k}. \end{aligned}$$
    (59)

    Suppose

    $$\begin{aligned} \gamma>0,\qquad |\beta |>\gamma ,\qquad |A_n|\leqslant A, \qquad A>0. \end{aligned}$$

    Then

    $$\begin{aligned} b_n=B_n\beta ^n,\qquad B_n=\sum _{k=0}^{n} A_k\left( \frac{\gamma }{\beta }\right) ^{k}, \qquad |B_n|<B=\frac{A}{1-\gamma /|\beta |}. \end{aligned}$$
    (60)

    We omit an elementary proof.

Appendix 2: Representation of a certain standard function

The formula

$$\begin{aligned} \sqrt{1-2xz+z^2}=1-xz-\sum _{n=1}^{\infty }P_{n1}(x)z^{n+1} \end{aligned}$$
(61)

is valid (Antonov et al. 2010; Kholshevnikov and Shaidulin 2014) on the product of a segment \(-1\leqslant x\leqslant 1\) and a circle \(|z|\leqslant 1\). Here

$$\begin{aligned} P_{n1}(x)=\int _{-1}^xP_{n}(y)\,dy, \end{aligned}$$

\(P_{n}\) being Legendre polynomial with the standard normalization \(P_{n}(1)=1\).

Functions \(P_{n1}\) have the following properties (Kholshevnikov and Shaidulin 2014, 2015b):

$$\begin{aligned} P_{n1}(\cos \theta )= & {} \sqrt{\frac{2\sin \theta }{\pi n^3}}\left\{ \cos \left[ \left( n+\frac{1}{2}\right) \theta +\frac{\pi }{4}\right] +\frac{r(n,\theta )}{n\sin \theta }\right\} ,\nonumber \\ |P_{n1}(\cos \theta )|< & {} \frac{\sqrt{2/\pi }}{n^{3/2}}. \end{aligned}$$
(62)

Here \(r(n,\theta )\) is bounded under \(n\geqslant 1\), \(0\leqslant \theta \leqslant \pi \); the exponent 3 / 2 in the estimate of \(|P_{n1}|\) is exact. Moreover, \(P_{n1}(0)=0\) if n is even, and

$$\begin{aligned} P_{n1}(0)=(-1)^{(n+1)/2}\frac{(n-2)!!}{(n+1)!!}\sim (-1)^{(n+1)/2} \frac{\sqrt{2/\pi }}{n^{3/2}} \end{aligned}$$
(63)

if n is odd.

Appendix 3: Asymptotics of a certain integral

An asymptotic representation (under \(\nu \rightarrow \infty \)) with a remainder

$$\begin{aligned} \int y^\nu \,dx=\sum _{n=0}^{k}c_n\frac{y^{\nu +n+1}}{(x-bc)^{2n+1}}+(2k+1)c_k\int \frac{y^{\nu +k+1}\,dx}{(x-bc)^{2k+2}} \end{aligned}$$
(64)

is true. Here

$$\begin{aligned} y=x^2-2bcx+b^2,\qquad c_n=\frac{(2n-1)!!}{2^{n+1}(\nu +1)^{\overline{n+1}}}, \end{aligned}$$

the point \(x_0=bc\) must not belong to the segment of integration.

To prove (64) it is sufficient to differentiate it.

Limiting ourselves to the first two terms in the right hand side of (64) we obtain

$$\begin{aligned} \int y^\nu \,dx\asymp \frac{y^{\nu +1}}{2(\nu +1)(x-bc)}+ \frac{y^{\nu +2}}{4(\nu +1)(\nu +2)(x-bc)^3}+\cdots \end{aligned}$$
(65)

As a consequence of (64) it is easy to establish, that

$$\begin{aligned} \int xy^\nu \,dx= & {} \frac{xy^{\nu +1}}{2(\nu +1)(x-bc)}+bc\sum _{n=1}^{k}c_n \frac{y^{\nu +n+1}}{(x-bc)^{2n+1}}+ \nonumber \\&+(2k+1)bcc_k\int \frac{y^{\nu +k+1}\,dx}{(x-bc)^{2k+2}}. \end{aligned}$$
(66)

Limiting ourselves to the first two terms in the right hand side we receive

$$\begin{aligned} \int xy^\nu \,dx\asymp \frac{xy^{\nu +1}}{2(\nu +1)(x-bc)}+ \frac{bc y^{\nu +2}}{4(\nu +1)(\nu +2)(x-bc)^3}+\cdots \end{aligned}$$
(67)

Let I be the integral (67) taken between 0 and a, \(a>0\). We assume the possibility that \(x_0\in [0,a]\). Let us prove the asymptotic representation:

$$\begin{aligned} I=\left\{ \begin{array}{ll} \frac{y^{\nu +2}(0)}{4(\nu +1)(\nu +2)(bc)^2}+\cdots ,&{}\quad \text {if}\quad a-2bc<0,\\ \frac{y^{\nu +1}(a)}{\nu +1}+\frac{2y^{\nu +2}(a)}{(\nu +1)(\nu +2)a^2}+\cdots ,&{}\quad \text {if}\quad a-2bc=0,\\ \frac{ay^{\nu +1}(a)}{2(\nu +1)(a-bc)}+\frac{bc y^{\nu +2}(a)}{4(\nu +1)(\nu +2)(a-bc)^3}+\cdots ,&{}\quad \text {if}\quad a-2bc>0. \end{array}\right. \end{aligned}$$
(68)

The variable y(x) is a downward-convex function, and takes the maximum at one of the endpoints of the segment [0, a]. We consider three cases depending on the sign of the difference \(y(a)-y(0)=a(a-2bc)\).

  1. (a)

    \(a-2bc<0\), \(\max y(x)=y(0)>y(a)\), \(bc>a/2\). If \(bc>a\), then we may use (67) straightforwardly. If \(a/2<bc\leqslant a\) we may restrict ourselves to an integration over the segment [0, a / 2]. Indeed,

    $$\begin{aligned}&\int _{0}^{a/2} xy^\nu \,dx\sim \frac{bc y^{\nu +2}(0)}{4(\nu +1)(\nu +2)(bc)^3}\,, \\&\int _{a/2}^{a} xy^\nu \,dx<\frac{a^2}{2}{{\bar{y}}}^\nu ,\quad \bar{y}=\max \{y(a/2),\,y(a)\}<y(0). \end{aligned}$$
  2. (b)

    \(a-2bc=0\), \(\max y(x)=y(a)=y(0)\). The function y(x) is symmetric with respect to the point \(x_0=bc=a/2\). After the substitution \(x=x_0+z\) we have

    $$\begin{aligned} I=\frac{a}{2}\int _{-a/2}^{a/2} y^\nu \,dz+\int _{-a/2}^{a/2} zy^\nu \,dz= a\int _{0}^{a/2} y^\nu \,dz=a\int _{a/2}^{a} y^\nu \,dx. \end{aligned}$$

    The last integral over the segment from a / 2 to 3a / 4 may be thrown off. For the integral from 3a / 4 to a we may use (65).

  3. (c)

    \(a-2bc>0\), \(\max y(x)=y(a)>y(0)\). If \(bc<0\), then \(x_0\) lies out of the segment of integration, and (68) follows from (67). Let \(bc\geqslant 0\). Then \(bc<a/2\), \(a-bc>a/2\), so

    $$\begin{aligned} \int _{0}^{a/2} xy^\nu \,dx<\frac{a^2}{8}{{\bar{y}}}^\nu ,\quad \bar{y}=\max \{y(0),\,y(a/2)\}<y(a). \end{aligned}$$

    For the integral between a / 2 and a we may use the formula (67).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kholshevnikov, K.V., Shaidulin, V.S. On the exactness of estimates for irregularly structured bodies of the general term of Laplace series. Celest Mech Dyn Astr 128, 75–94 (2017). https://doi.org/10.1007/s10569-016-9742-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-016-9742-8

Keywords

Navigation