Skip to main content
Log in

On the integral inversion of satellite-to-satellite velocity differences for local gravity field recovery: a theoretical study

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The gravity field can be recovered locally from the satellite-to-satellite velocity differences (VDs) between twin-satellites moving in the same orbit. To do so, three different integral formulae are derived in this paper to recover geoid height, radial component of gravity anomaly and gravity disturbance at sea level. Their kernel functions contain the product of two Legendre polynomials with different arguments. Such kernels are relatively complicated and it may be impossible to find their closed-forms. However, we could find the one related to recovering the geoid height from the VD data. The use of spectral forms of the kernels is possible and one does not have to generate them to very high degrees. The kernel functions are well-behaving meaning that they reduce the contribution of far-zone data and for example a cap margin of \(7^{\circ }\) is enough for recovering gravity anomalies. This means that the inversion area should be larger by \(7^{\circ }\) from all directions than the desired area to reduce the effect of spatial truncation error of the integral formula. Numerical studies using simulated data over Fennoscandia showed that when the distance between the twin-satellites is small, higher frequencies of the anomalies can be recovered from the VD data. In the ideal case of having short distance between the satellites flying at 250 km level, recovering radial component of gravity anomaly with an accuracy of 7 mGal is possible over Fennoscandia, if the VD data is contaminated only with the spatial truncation error, which is an ideal assumption. However, the problem is that the power of VD signal is very low when the satellites are close and it is very difficult to recognise the signal amongst the noise of the VD data. We also show that for a successful determination of gravity anomalies at sea level from an altitude of 250 km mean VDs with better accuracy than 0.01 mm/s are required. When coloured noise at this level is used for the VDs at 250 km with separation of 300 km, the accuracy of recovery will be about 11 mGal over Fennoscandia. In the case of using the real velocities of the satellites, the main problems are downward/upward continuation of the VDs on the mean orbital sphere and taking the azimuthal integration of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. US Department of Commerce, National Bureau of Standards, Washington, DC, USA (1972)

  • Anli, F., Gungor, S.: Some useful properties of Legendre polynomials and its applications to neutron transport equation in slab geometry. Appl. Math. Model. 31, 727–733 (2007)

    Article  MATH  Google Scholar 

  • Balmino, G., Perosanz, F., Rummel, R., Sneeuw, N., Suenkel, H.: CHAMP, GRACE and GOCE: mission concepts and simulations. Boll. Geofis. Teor. Appl. 40(3–4), 309–320 (2001)

    Google Scholar 

  • Bentel, K., Gerlach, C.: A closed-loop simulation on regional modelling of gravity changes from GRACE. In: Rizos, C., Willis, P. (eds.) Earth on the Edge: Science for Sustainable Planet, International Association of Geodesy Symposia, pp. 89–95. Springer, Berlin (2014)

    Chapter  Google Scholar 

  • Bjerhammar, A.: On the energy integral for satellites. The Royal Institute of Technology (KTH). Division of Geodesy, Stockholm, Sweden (1968)

  • Eicker, A.: Gravity field refinement by radial basis functions from in-situ satellite data. Deutsche Geodätische Kommission, Reihe C, Nr. 676, München, Germany (2012)

  • Eicker, A., Mayer-Guerr, T., Ilk, K.H.: Improved resolution of a GRACE gravity field model by regional refinements. In: Sideris, M.G. (ed.) Observing our Changing Earth, International Association of Geodesy Symposia, pp. 99–104. Springer, Berlin (2009)

    Google Scholar 

  • Eshagh, M.: On satellite gravity gradiometry, Ph.D. thesis in Geodesy, Royal Institute of Technology (KTH), Stockholm, Sweden (2009)

  • Eshagh, M.: Inversion of satellite gradiometry data using statistically modified integral formulas for local gravity field recovery. Adv. Space Res. 47(1), 74–85 (2011a)

    Article  ADS  Google Scholar 

  • Eshagh, M.: Sequential Tikhonov regularisation: an alternative way for integral inversion of satellite gradiometry data. Z. Vermess. 135(2), 113–121 (2011b)

    Google Scholar 

  • Eshagh, M.: The effect of spatial truncation error on integral inversion of satellite gravity gradiometry data. Adv. Space Res. 47, 1238–1247 (2011c)

    Article  ADS  Google Scholar 

  • Eshagh, M., Abdollahzadeh, M.: The effect of geopotential perturbations of GOCE on its observations: a numerical study. Acta Geod. Geophys. Hung. 44(4), 385–398 (2009)

    Article  Google Scholar 

  • Eshagh, M., Sjöberg, L.E.: Determination of gravity anomaly at sea level from inversion of satellite gravity gradiometric data. J. Geodyn. 51, 366–377 (2011)

    Article  Google Scholar 

  • Eshagh, M., Ghorbannia, M.: The use of Gaussian equations of motions of a satellite for local gravity anomaly recovery. Adv. Space Res. 52(1), 30–38 (2013)

    Article  ADS  Google Scholar 

  • Eshagh, M., Ghorbannia, M.: The effect of spatial truncation error on variance of gravity anomalies derived from inversion of satellite orbital and gradiometric data. Adv. Space Res. 54(2), 261–271 (2014)

    Article  ADS  Google Scholar 

  • Eshagh, M., Lemoine, J.M., Gegout, P., Biancale, R.: On regularized time varying gravity field models based on GRACE data and their comparison with hydrological models. Acta Geophys. 61(1), 1–17 (2013)

    Article  ADS  Google Scholar 

  • Fengler, M.J., Freeden, W., Kohlhaas, A., Michel, V., Peters, T.: Wavelet modeling of regional and temporal variations of the Earth’s gravitational potential observed by GRACE. J. Geod. 81, 5–15 (2007)

    Article  ADS  MATH  Google Scholar 

  • Garcia, R.V.: Local geoid determination from GRACE mission. Report no. 460, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, USA (2002)

  • Gruber, C., Moon, Y., Flechtner, F., Dahle, C., Novák, P., Koenig, R., Neumayer, H.: Submonthly GRACE solutions from localizing integral equations and Kalman filtering. In: Rizos, C., Willis, P. (Eds.) Earth on the Edge: Science for Sustainable Planet, International Association of Geodesy Symposia, vol. 139, pp. 383–389 (2014)

  • Hajela, D.P.: Improved procedures for the recovery of \(5^{\circ }\) mean gravity anomalies from ATS-6/GEOS-3 satellite-to-satellite range-rate observations. Report no. 276, Department of Geodetic Science, Ohio State University, Columbus, USA (1974)

  • Hajela, D.P.: A simulation study to test the prediction of \(1^{\circ } \times 1^{\circ }\) mean gravity anomalies using least squares collocation from GRAVSAT mission. Report no. 316, Department of Geodetic Science, Ohio State University, Columbus, USA (1981)

  • Han, S.-C., Shum, C.K., Braun, A.: High-resolution continental water storage recovery from low–low satellite-to-satellite tracking. J. Geodyn. 39, 11–28 (2005a)

    Article  Google Scholar 

  • Han, S.-C., Shum, C.K., Jekeli, C., Alsdorf, D.: Improved estimation of terrestrial water storage changes from GRACE. Geophys. Res. Lett. 32, L07302 (2005b)

    ADS  Google Scholar 

  • Han, S.-C., Ditmar, P.: Localized spectral analysis of global satellite gravity fields for recovering time-variable mass redistributions. J. Geod. 82, 423–430 (2008)

    Article  ADS  Google Scholar 

  • Han, S.-C., Rowlands, D.D., Luthcke, S.B., Lemoine, F.: Localized analysis of satellite tracking data for studying time-variable Earth’s gravity field. J. Geophys. Res. 113, B06401 (2008)

    ADS  Google Scholar 

  • Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  • Heiskanen, W.A., Moritz, H.: Physical Geodesy. W.H. Freeman and Co., San Francisco (1967)

    Google Scholar 

  • Janák, J., Fukuda, Y., Xu, P.: Application of GOCE data for regional gravity field modeling. Earth Planets Space 61, 835–843 (2009)

    Article  ADS  Google Scholar 

  • Jekeli, C.: The determination of gravitational potential differences from satellite-to-satellite tracking. Celest. Mech. Dyn. Astron. 75, 85–101 (1999)

    Article  ADS  MATH  Google Scholar 

  • Jekeli, C., Rapp, R.H.: Accuracy of the determination of mean anomalies and neam geoid undulations from a satellite gravity mapping mission. Report no. 307, Department of Geodetic Science, The Ohio State University, Columbus, USA (1980)

  • Keller, W., Sharifi, M.A.: Satellite gradiometry using a satellite pair. J. Geod. 75, 544–557 (2005)

    Article  ADS  Google Scholar 

  • Kotsakis, C.: A covariance-adaptive approach for regularized inversion in linear models. Geophys. J. Int. 171, 509–522 (2007)

    Article  ADS  Google Scholar 

  • Moritz, H.: Geodetic reference system 1980. J. Geod. 74, 128–133 (2000)

    Article  ADS  Google Scholar 

  • Novák, P.: Integral inversion of GRACE-type data. Stud. Geophys. Geod. 51, 351–367 (2007)

    Article  ADS  Google Scholar 

  • Obenson, G.: Direct evaluation of the earh’s gravity anomaly field from orbital analysis of artificial Earth satellites. Report no. 3, Department of Geodetic Science, Ohio State University, Columbus, USA (1970)

  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K.: The development and evaluation of the Earth gravitational model 2008 (EGM2008). J. Geophys. Res. Solid Earth 117, B04406 (2012)

    Article  ADS  Google Scholar 

  • Pick, M., Pícha, J., Vyskočil, V.: Theory of the Earth Gravity Field. Elsevier, Amsterdam (1973)

    MATH  Google Scholar 

  • Ramillien, G., Famiglietti, J.S., Wahr, J.: Detection of continental hydrology and glaciology signals from GRACE: a review. Surv. Geophys. 29, 361–374 (2008)

    Article  ADS  Google Scholar 

  • Ramillien, G., Biancale, R., Gratton, S., Vasseur, X., Bourgogne, S.: GRACE-derived surface water mass anomalies by energy integral approach: application to continental hydrology. J. Geod. 85, 313–328 (2011)

    Article  ADS  Google Scholar 

  • Ramillien, G.L., Seoane, L., Frappart, F., Biancale, R., Gratton, S., Vasseur, X., et al.: Constrained regional recovery of continental water mass time-variations from GRACE-based geopotential anomalies over South America. Surv. Geophys. 33, 887–905 (2012)

    Article  ADS  Google Scholar 

  • Reed, G.B.: Application of kinematical geodesy for determining the short wavelength component of the gravity field by satellite gradiometry. Report no. 201, Department of Geodetic Science, Ohio State University, Columbus, USA (1973)

  • Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, J.-M., König, R., Loyer, S., Neumayer, H., Marty, J.C., Barthelmes, F., Perosanz, F., Zhu, S.Y.: A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys. Res. Lett. 29(14), 37:1–4 (2002)

  • Rowlands, D.D., Luthcke, S.B., Klosko, S.M., Lemoine, F.G.R., Chinn, D.S., McCarthy, J.J., et al.: Resolving mass flux at high spatial and temporal resolution using GRACE inter satellite measurements. Geophys. Res. Lett. 32, L04310 (2005)

    Article  ADS  Google Scholar 

  • Rummel, R.: Downward continuation of gravity field information from satellite to satellite tracking or satellite gradiometry in local areas. Report no. 221, Department of Geodetic Science, Ohio State University, Columbus, USA (1975)

  • Rummel, R., Rapp, R.H., Sjöberg, L.E.: The determination of gravity anomalies from geoid heights using inverse Stokes formula. Report no. 269, Department of Geodetic Science, The Ohio State University, Columbus, USA (1978a)

  • Rummel, R., Reigber, C., Ilk, K.H.: The use of satellite-to-satellite tracking for gravity parameters recovery. ESA SP 137, 153–161 (1978b)

  • Rummel, R.: Geoid heights, geoid height differences, and mean gravity anomalies from low-low satellite-to-satellite tracking – an error analysis. Report no. 306, Department of Geodetic Science, Ohio State University, Columbus, USA (1980)

  • Schmeer, M., Schmidt, M., Bosch, W., Seitz, F.: Separation of mass signals within GRACE monthly gravity field models by means of empirical orthogonal functions. J. Geodyn. 59–60, 124–132 (2012)

    Article  Google Scholar 

  • Schmidt, M., Fengler, M., Mayer-Guerr, T., Eicker, A., Kusche, J., Sánchez, L., et al.: Regional gravity modeling in terms of spherical base functions. J. Geod. 81, 17–38 (2007)

    Article  ADS  MATH  Google Scholar 

  • Seeber, G.: Satellite Geodesy. Walter de Gruyter, Berlin (2003)

    Book  Google Scholar 

  • Sjöberg, L.E.: On the recovery of potential coefficients by the use of the energy integral for satellites. Royal Institute of Technology (KTH), Stockholm, Sweden (1978)

  • Sjöberg, L.E.: On the recovery of geopotential coefficients using satellite-to-satellite range-rate data on a sphere. B. Geod. 56, 27–39 (1982)

    Article  ADS  Google Scholar 

  • Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., et al.: GGM02–an improved Earth gravity field model from GRACE. J. Geod. 79, 467–478 (2005)

    Article  ADS  Google Scholar 

  • Tóth, G., Földváry, L.: Effect of geopotential model errors in the projection of GOCE gradiometer observables, IAG symposia. In: Jekeli, C., Bastos, J., Fernandes, L. (eds.) Gavity, Geoid and Space Missions, vol. 129, pp. 72–76. Spriner, Berlin (2005)

    Chapter  Google Scholar 

  • Tscherning, C.C.: A Study of Satellite Altitude Influence on the Sensitivity of Gravity Gradiometer Measurements. DGK, Müncheny (1988)

    Google Scholar 

  • Tscherning, C.C.: A local study of the influence of sampling rate, number of observed components and instrument noise on 1 deg. mean geoid and gravity anomalies determined from satellite gravity gradiometer measurements. Ric. Geod. Topogr. Fotogram 5, 139–146 (1989)

    Google Scholar 

  • Visser, P.: The Use of Satellites in Gravity Field Determination and Adjustment. Ph.D. Dissertation, Delft University Press, Delft, Netherlands (1992)

  • Wahba, G.: A survey of some smoothing problems and the methods of generalized cross-validation for solving them. In: Krishnaiah, P.R. (Ed.) Proceedings of the conference on the applications of Statistics, Dayton, Ohio, USA, June 14–17 (1976)

  • Weigelt, W., Antoni, M., Keller, W.: Regional gravity field recovery from GRACE using optimized radial base functions. In: Mertikas, S.P. (ed.) Gravity, Geoid and Earth Observation, International Association of Geodesy Symposia, vol. 135, pp. 139–146. Springer, Berlin (2010)

    Chapter  Google Scholar 

  • Wolff, M.: Direct measurements of the Earth’s gravitational potential using a satellite pair. J Geophys. Res. 74, 5295–5300 (1969)

    Article  ADS  Google Scholar 

  • Xu, P.: Determination of surface gravity anomalies using gradiometric observables. Geophys. J. Int. 110, 321–332 (1992)

    Article  ADS  Google Scholar 

  • Xu, P.: Truncated SVD methods for discrete linear ill-posed problems. Geophys. J. Int. 135, 505–514 (1998)

    Article  ADS  Google Scholar 

  • Yildiz, H.: A study of regional gravity field recovery from GOCE vertical gravity gradient data in the Auvergne test area using collocation. Stud. Geophys. Geod. 56, 171–184 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Michal Šprlák was supported by the project GA15-08045S of the Czech Science Foundation. Thoughtful and constructive comments of two anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Eshagh.

Appendix

Appendix

The starting point for the mathematical derivation of the kernel (3e) in the closed-form is the following expression, see, e.g. (Anli and Gungor 2007):

$$\begin{aligned}&\sum _{n=0}^\infty {t^{n} P_n (x) P_n (y)} =\frac{2 K(k)}{\pi \sqrt{a-b}}, k=\sqrt{\frac{2b}{b-a}}, a=1-2xyt+t^{2},\nonumber \\&\quad b=-2t\sqrt{1-x^{2}}\sqrt{1-y^{2}}, \end{aligned}$$
(6)

where \(-1 \le x \le 1\) and \(-1 \le y \le 1\) and K(k) is the complete elliptic integral of the first kind:

$$\begin{aligned} K(k)=\int \limits _0^1 {\frac{\hbox {d}u}{\sqrt{1-u^{2}}\sqrt{1-k^{2}u^{2}}}}. \end{aligned}$$
(7)

Alternatively, Eq. (6) may be rewritten in terms of the Gauss hypergeometric function \(_{2}F_{1}\):

$$\begin{aligned} \sum _{n=0}^\infty {t^{n} P_n (x) P_n (y)} =\frac{_2 F_1 (1/2,1/2,1,k^{2})}{\sqrt{a-b}}, \end{aligned}$$
(8)

where

$$\begin{aligned} {}_2 F_1 \left( {e,f,g,h} \right) =\sum _{n=0}^\infty {\frac{\left( e \right) _n \left( f \right) _n }{\left( g \right) _n }} \frac{h^{n}}{n!} \end{aligned}$$
(9)

is the Gauss hypergeometric function (Abramowitz and Stegun 1972). The last equation results from the relationship between the complete elliptic integral of the first kind and the Gauss hypergeometric function, i.e., \(K(k)=\uppi /2_{2}F_{1}(1/2, 1/2, 1, k^{2})\), (see e.g. ibid. Eq. 17.3.9). Differentiating Eq. (8) with respect to the variable t we get:

$$\begin{aligned} \sum _{n=0}^\infty {n t^{n-1} P_n (x) P_n (y)}= & {} \frac{1}{\left( {a-b} \right) ^{3/2}}\left[ {(xy-t-\sqrt{1-x^{2}}\sqrt{1-y^{2}}) _2F_1 (1/2,1/2,1,k^{2})} \right. \nonumber \\&\left. {-\frac{b(1-t^{2})}{2t(a-b)^{2}} F_1(3/2,3/2,2,k^{2})} \right] , \end{aligned}$$
(10)

where the rule for differentiating the Gauss hypergeometric function has been applied, i.e.,:

$$\begin{aligned} \frac{\partial _2 F_1 (e,f,g,h)}{\partial h}=\frac{ef}{g}F_1(e+1,f+1,g+1,h). \end{aligned}$$
(11)

Having Eqs. (9) and (10) in hand, we may now provide the final closed-form formula for the kernel (3e). After some algebraic manipulations we get:

$$\begin{aligned}&\sum _{n=0}^\infty {(2n+1) t^{n+1} P_n (x) P_n (y)}\nonumber \\&\quad =\frac{t(1-t^{2})}{\left( {a-b} \right) ^{3/2}}\left[ {_2 F_1 (1/2,1/2,1,k^{2})-\frac{b}{a-b^{2}} F_1 (3/2,3/2,2,k^{2})} \right] . \end{aligned}$$
(12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshagh, M., Šprlák, M. On the integral inversion of satellite-to-satellite velocity differences for local gravity field recovery: a theoretical study. Celest Mech Dyn Astr 124, 127–144 (2016). https://doi.org/10.1007/s10569-015-9654-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9654-z

Keywords

Navigation