Skip to main content

Advertisement

Log in

Detection of Continental Hydrology and Glaciology Signals from GRACE: A Review

  • Original Paper
  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Since its launch in March 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided a global mapping of the time-variations of the Earth’s gravity field. Tiny variations of gravity from monthly to decadal time scales are mainly due to redistributions of water mass inside the surface fluid envelops of our planet (i.e., atmosphere, ocean and water storage on continents). In this article, we present a review of the major contributions of GRACE satellite gravimetry in global and regional hydrology. To date, many studies have focused on the ability of GRACE to detect, for the very first time, the time-variations of continental water storage (including surface waters, soil moisture, groundwater, as well as snow pack at high latitudes) at the unprecedented resolution of ~400–500 km. As no global complete network of surface hydrological observations exists, the advances of satellite gravimetry to monitor terrestrial water storage are significant and unique for determining changes in total water storage and water balance closure at regional and continental scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agência National de Agua (ANA) (2006) Bacía do rio Amazonas: informações sobre a bacía. Data available on request at: http://www.ana.gov.br

  • Andersen OB, Seneviratne SI, Hinderer J, Viterbo P (2005) GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys Res Lett 32:18

    Article  Google Scholar 

  • Bettadpur S (2007) Level-2 gravity field product user handbook, GRACE, 327–734, GRACE Proj Cent for Space Res, University of Texas, Austin

  • Bettadpur S, Watkins M (2000) GRACE gravity science & its impact on mission design, AGU Spring 2000, GP51C-11, http://www.csr.utexas.edu/grace/publications

  • Biancale R, Lemoine J-M, Balmino G, Loyer S, Bruisma S, Pérosanz F, Marty J-C and Gégout P (2006) 3 years of geoid variations from GRACE and LAGEOS data at 10-day intervals from July 2002 to March 2005, CNES/GRGS product data available on CD-ROM

  • Carrère L, Lyard F (2003) Modelling the barotropic response of the global ocean to atmospheric wind and pressure forcing – comparisons with observations. Geophys Res Lett 30(6):1275

    Article  Google Scholar 

  • Chen J, Rodell M, Wilson CR, Famiglietti JS (2005a) Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys Res Lett 32:L14405. doi:10.1029/2005GL022964

    Article  Google Scholar 

  • Chen JL, Wilson CR, Famiglietti JS, Rodell M (2005b) Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J Geophys Res, Solid Earth 110:B08408. doi:10.1029/2004JB003536

    Article  Google Scholar 

  • Chen JL, Wilson CR, Blankenship DD, Tapley BD (2006a) Antarctic mass rates from GRACE. Geophys Res Lett 33:L11502. doi:10.1029/2006GL026369

    Article  Google Scholar 

  • Chen JL, Tapley BD, Wilson CR (2006b) Alaskan mountain glacial melting observed by satellite gravimetry, 248(1–2):368–378. doi: 10.1016/j.epsl.2006.05.039

  • Chen JL, Wilson CR, Tapley BD, Blanckenship DD, Ivins ER (2007) Patagonia ice field melting observed by Gravity Recovery and Climate Experiment (GRACE). Geophys Res Lett 34:L22501. doi:10.1029/2007GL031871

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Blanckenship D, Young D (2008) Antarctic regional ice loss rates from GRACE. EPSL 266(1–2):140–148. doi:10.1016/j.epsl.2007.10.057

    Article  Google Scholar 

  • Crossley D, Hinderer J, Boy J-P (2005) Time-variation of the European gravity field from superconducting gravimeters. Geophys J Int 161(2):257–264. doi:10.1111/j.1365-246X.2005.02586.x

    Article  Google Scholar 

  • Davis JL, Elósegui P, Mitrovica JX, Tamisiea ME (2004) Climate-driven deformation of the solid Earth from GRACE and GPS. Geophys Res Lett 31:L24605. doi:10.1029/2004GL021435

    Article  Google Scholar 

  • Dickey J et al (1997) Satellite Gravity and the Geosphere: contribution to the study of the Solid Earth and its envelope. National Research Council (NRC), National Academy Press, Washington DC

    Google Scholar 

  • Döll PF, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1–2):105–134. doi:10.1016/S0022-1694(02)00283-4

    Article  Google Scholar 

  • Famiglietti JS (2004) Remote sensing of terrestrial water storage, soil moisture and surface waters. In: Sparks RSJ, Hawkesworth CJ (eds) The state of the planet: frontiers and challenges in geophysics. Geophysical Monograph Series, vol 150. American Geophysical Union (AGU), Washington DC, pp 197–207

  • Frappart F, Ramillien G, Biancamaria S, Mognard-Campbell N, Cazenave A (2006a) Evolution of high-latitude snow mass derived from the GRACE gravimetry mission (2002–2004). Geophys Res Lett 33:L02501. doi:10.1029/2005GL024778

    Article  Google Scholar 

  • Frappart F, Dominh K, Lhermitte J, Ramillien G, Cazenave A, LeTaon T (2006b) Water volume change in the lower Mekong basin from satellite altimetry and imagery data. Geophys J Int 167:570–584

    Article  Google Scholar 

  • Garcia RV (2002) Local geoid determination from GRACE mission, Report 43210–1275. Ohio State University, Columbus

  • GRACE Science Mission Requirement Document (2000) GRACE 327–720, June 2000

  • Han SC (2004) Efficient determination of global gravity field from satellite-to-satellite tracking mission GRACE. Celest Mech Dyn Astron 88:69–102

    Article  Google Scholar 

  • Han SC, Jekeli C, Shum CK (2003) Static and temporal gravity field recovery using GRACE potential difference observables. Adv Geosci 1:19–26

    Article  Google Scholar 

  • Han SC, Shum CK, Jekeli C et al (2005) Improved estimation of terrestrial water storage changes from GRACE. Geophys Res Lett 32:L07302. doi:10.1029/2005GL02238

    Article  Google Scholar 

  • Han SC, Rowlands DD, Luthcke SB, Lemoine FG (2008) Localized analysis of satellite tracking data for studying time-variable Earth’s gravity fields. J Geophys Res 113:B06401. doi:10.1029/2007JB005218

    Article  Google Scholar 

  • Hinderer J, Andersen O, Lemoine F, Crossley D, Boy J-P (2006) Seasonal changes in European gravity field from GRACE: a comparison with superconducting gravimeters and hydrology model predictions. J Geodyn 41(1–3):59–68. doi:10.1016/j.jog.2005.08.037

    Article  Google Scholar 

  • Hirschi M, Seneviratne SI, Schär C (2006) Seasonal variations in terrestrial water storage for major midlatitude river basins. J Meteorol 7(1):39–60. doi:10.1175/JHM480.1

    Article  Google Scholar 

  • Ivins E, James TS (2005) Antarctic glacial isostatic adjustment: a new assessment. Antarct Sci 17:541–553. doi:10.1017/S0954102005002968

    Article  Google Scholar 

  • Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Rep. 327, Dep. of Geod. and Sci. and Surv., Ohio State Univ

  • Jekeli C (1999) The determination of gravitational potential differences from satellite-to-satellite tracking. Celest Mech Dyn Astron 7582:85–101

    Article  Google Scholar 

  • Leblanc M, Tregoning P, Ramillien G, Tweed SO and Fakes A (2008) Basin-sacle, integrated observations of the 21st Century multi-year drought in southeast Australia, WRR (in revision)

  • Lemoine FG, Luthcke SB, Rowlands DD (2007a) The use of mascons to resolve time-variable gravity from GRACE, Dynamic Planet, 130, IAG Symposia, Springer Berlin Heidelberg. doi: 10.1007/978-3-540-49349-5

  • Lemoine J-M, Bruisma S, Loyer S, Biancale R, Marty J-C, Pérosanz F, Balmino G (2007b) Temporal gravity field models inferred from GRACE data. Adv Space Res. doi: 10.1016/j.asr.2007.03.062

    Google Scholar 

  • Lettenmaier DP, Famiglietti JS (2006) Water from on high. Nature 444:562–563

    Article  Google Scholar 

  • Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, McCarthy JJ, Chinn DS (2006) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314:1286–1289

    Article  Google Scholar 

  • Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber C, Schmidt R, Schwintzer P, Sun H-P, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geod 79(10–11):573–585. doi:10.1007/s00190-005-0014-8

    Article  Google Scholar 

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149. doi:10.1146/annurev.earth.32.082503.144359

    Article  Google Scholar 

  • Ngo-Duc T, Laval K, Polcher J, Ramillien G, Cazenave A (2007) Validation of the land water storage simulated by Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and Climate Experiment (GRACE) data. Water Resources Res 43:W04427. doi:10.1029/2006WR004941

    Article  Google Scholar 

  • Niu G-Y, Yang Z-L, Dickinson RE, Gulden LE, Su H (2007a) Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J Geophys Res 112:D07103. doi:10.1029/2006JD007522

    Article  Google Scholar 

  • Niu G-Y, Seo K-W, Yang Z-L, Wilson C, Hua S, Chen J, Rodell M (2007b) Retrieving snow mass from GRACE terrestrial water storage change with a land surface model. Geophys Res Lett 34:L15704. doi:1.1029/2007GL030413

    Article  Google Scholar 

  • Papa F, Günter A, Frappart F, Prigent C, Rossow WB (2008) Variations of surface water extent and water storage in large river basins: A comparison of different global data sources. Am Geophys Union 35:L11401. doi:10.1029/2008GL033857

    Google Scholar 

  • Ramillien G, Cazenave A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry. Geophys J Int 158(3):813–826

    Article  Google Scholar 

  • Ramillien G, Frappart F, Cazenave A, Güntner A (2005) Time variations of land water storage from an inversion of 2 years of GRACE geoids. Earth Planet Sci Lett 235(1–2):283–301

    Article  Google Scholar 

  • Ramillien G, Lombard A, Cazenave A, Ivins E, Llubes M, Remy F, Biancale R (2006a) Interannual variations of ice sheets mass balance from GRACE and sea level. Global Planet Change 53:198–208

    Article  Google Scholar 

  • Ramillien G, Frappart F, Güntner A, Ngo-Duc T, Cazenave A (2006b) Mapping time variations of evapotranspiration rate from GRACE satellite gravimetry. Water Resources Res 42:W10403. doi:10.1029/2005WR004331

    Article  Google Scholar 

  • Ramillien G, Bouhours S, Lombard A, Cazenave A, Flechtner F, Schmidt R (2008) Land water storage contribution to sea level from GRACE geoid data over 2003–2006. Global Planet Change 60:381–392. doi:10.1016/j.gloplacha.2007.04.002

    Article  Google Scholar 

  • Rodell M, Famiglietti J (1999) Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour Res 35(9):2705–2723

    Article  Google Scholar 

  • Rodell M, Famiglietti J (2001) An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 37(5):1327–1339

    Article  Google Scholar 

  • Rodell M, Famiglietti JS (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. J Hydrol 263(1–4):245–256

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004a) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394. doi:10.1175/BAMS-85-3-381

    Article  Google Scholar 

  • Rodell M, Famiglietti JS, Chen J, Seneviratne SI, Viterbo P, Holl S, Wilson CR (2004b) Basin scale estimates of evapotranspiration using GRACE and other observation. Geophys Res Lett 31:L20504. doi:10.1029/2004GL020873

    Article  Google Scholar 

  • Rodell M, Chen J, Kato H, Famiglietti J, Nigro J, Wilson C (2007) Estimating ground water storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15:159–166. doi:10.1007/s10040-006-0103-7

    Article  Google Scholar 

  • Rowlands DD, Ray RD, Chinn DS, Lemoine FG (2002) Short-arc analysis of intersatellite tracking data in a mapping mission. J Geod 76:307–316. doi:10.1007/s.00190-002-0255-8

    Article  Google Scholar 

  • Rowlands DD, Luthcke SB, Klosko SM, Lemoine FG, Chinn DS, McCarthy JJ, Cox CM, Anderson OB (2005) Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys Res Lett 32:L04310. doi:10.1029/2004GL022386

    Article  Google Scholar 

  • Seo KW, Wilson CR (2005) Simulated estimation of hydrological loads from GRACE. J Geod 78(7–8):442–456

    Article  Google Scholar 

  • Seo K-W, Wilson CR, Famiglietti JS, Chen JL, Rodell M (2006) Terrestrial water mass load changes from Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 42:W05417. doi:10.1029/2005WR004255

    Article  Google Scholar 

  • Schmidt R, Schwintzer P, Flechtner F, Reigber C, Güntner A, Döll P, Ramillien G, Cazenave A, Petrovic S, Jochmann H, Wunsch J (2006) GRACE observations of changes in continental water storage. Global Planet Change 50(1–2):112–126. doi:10.1016/j.gloplacha.2004.11.018

    Article  Google Scholar 

  • Strassberg G, Scanlon BR, Rodell M (2007) Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from High Plains Aquifer (USA). Geophys Res Lett 34:L14402. doi:10.1029/2007GL030139

    Article  Google Scholar 

  • Swenson S, Milly PCD (2006) Climate model biases in seasonality of continental water storage revealed by satellite gravimetry. Water Resources Res 42:W03201. doi:10.1029/2005WR004628

    Article  Google Scholar 

  • Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J Geophys Res, Solid Earth 107(B9):2193. doi:10.1029/2001JB000576

    Article  Google Scholar 

  • Swenson S, Wahr J (2003) Monitoring changes in continental water storage with GRACE. Space Sci Rev 108(1–2):345–354

    Article  Google Scholar 

  • Swenson S, Wahr J (2006a) Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravimetry measurements. J Hydrometeorol 7(2):252–270. doi:10.1175/JHM478.1

    Article  Google Scholar 

  • Swenson S, Wahr J (2006b) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285

    Article  Google Scholar 

  • Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resources Res 39(8):1223. doi:10.1029/2002WR001808

    Article  Google Scholar 

  • Swenson SC, Yeh PJ-F, Wahr J, Famiglietti JS (2006) A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys Res Lett 33:L16401. doi:10.1029/2006GL026962

    Article  Google Scholar 

  • Swenson S, Famiglietti J, Basara J, Wahr J (2008) Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesonet soil moisture data. Water Resour Res 44:W01413. doi:10.1029/2007WR006057

    Article  Google Scholar 

  • Syed T, Famiglietti J, Chen J, Rodell M, Seneviratne S, Viterbo P, Wilson C (2005) Total basin discharge for the Amazon and the Mississippi River basins from GRACE and a land-atmosphere water balance. Geophys Res Lett 32:24404. doi:10.1029/2005GL024851

    Article  Google Scholar 

  • Syed TH, Famiglietti JS, Zlotnicki V, Rodell M (2007) Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys Res Lett 34:L19404. doi:10.1029/2007GL031254

    Article  Google Scholar 

  • Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR (2008a) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res 44:W02433. doi:10.1029/2006WR005779

    Article  Google Scholar 

  • Syed TH, Famiglietti JS, Chambers D (2008b) GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J Hydrometeorol. doi:10.1175/2008JHM993.1

  • Tamisiea ME, Leuliette EW, Davis JL, Mitrovica JX (2005) Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys Res Lett 32:L20501. doi:10.1029/2005GL023961

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004a) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Tapley B, Bettadpur S, Ries J, Thompson P, Watkins M (2004b) GRACE measurements of mass variability in the Earth system. Science 305(5683):503–505. doi:10.1126/science.1099192

    Article  Google Scholar 

  • Thomas J (1999) An analysis of gravity field estimation based on inter-satellite dual one-way biased ranging. JPL Publication 98–15, pp 3–13

  • Velicogna I, Wahr J (2002) A method for separating Antarctic post glacial rebound and ice mass balance using future ICESat Geoscience Laser Altimeter System, Gravity Recovery and Climate Experiment and GPS satellite data. J Geophys Res 107(B10):2263. doi:10.1029/2001JB000708

    Article  Google Scholar 

  • Velicogna I, Wahr J (2005) Ice mass balance in Greenland from GRACE. Geophys Res Lett 32(18):L18505. doi:10.1029/2005GL023955

    Article  Google Scholar 

  • Velicogna I, Wahr J (2006a) Measurements of time-variable gravity show mass loss in Antarctica. Science 311(5768):1754–1756

    Article  Google Scholar 

  • Velicogna I, Wahr J (2006b) Acceleration of Greenland ice mass loss in spring 2004. Nature 443:329–331. doi:10.1038/nature05168

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res Solid Earth 103(B12):30205–30229

    Article  Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31(11):L11501. doi:10.1029/2004GL019779

    Article  Google Scholar 

  • Wilson MD, Bates PD, Alsdorf D, Forsberg B, Horritt M, Melack J, Frappart F, Famiglietti J (2007) Modeling large-scale inundation of Amazonian seasonally-flooded wetlands. Geophys Res Lett 34:L15404. doi:10.1029/2007GL030156

    Article  Google Scholar 

  • Yeh PJF, Swenson SC, Famiglietti JS, Rodell M (2006) Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment. Water Resources Res 42:W12203. doi:10.1029/2006WR005374

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their helpful comments and suggestions that enabled the improvement of the manuscript. This work was supported in part by the NNG04GE99G and JPL-REASON1259524 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ramillien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramillien, G., Famiglietti, J.S. & Wahr, J. Detection of Continental Hydrology and Glaciology Signals from GRACE: A Review. Surv Geophys 29, 361–374 (2008). https://doi.org/10.1007/s10712-008-9048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-008-9048-9

Keywords

Navigation