Skip to main content
Log in

Dynamics of the Jupiter Trojans with Saturn’s perturbation in the present configuration of the two planets

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The dynamics of the two Jupiter triangular libration points perturbed by Saturn is studied in this paper. Unlike some previous works that studied the same problem via the pure numerical approach, this study is done in a semianalytic way. Using a literal solution, we are able to explain the asymmetry of two orbits around the two libration points with symmetric initial conditions. The literal solution consists of many frequencies. The amplitudes of each frequency are the same for both libration points, but the initial phase angles are different. This difference causes a temporary spatial asymmetry in the motions around the two points, but this asymmetry gradually disappears when the time goes to infinity. The results show that the two Jupiter triangular libration points should have symmetric spatial stable regions in the present status of Jupiter and Saturn. As a test of the literal solution, we study the resonances that have been extensively studied in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006). The resonance structures predicted by our analytic theory agree well with those found in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006) via a numerical approach. Two kinds of chaotic orbits are discussed. They have different behaviors in the frequency map. The first kind of chaotic orbits (inner chaotic orbits) is of small to moderate amplitudes, while the second kind of chaotic orbits (outer chaotic orbits) is of relatively larger amplitudes. Using analytical theory, we qualitatively explain the transition process from the inner chaotic orbits to the outer chaotic orbits with increasing amplitudes. A critical value of the diffusion rate is given to separate them in the frequency map. In a forthcoming paper, we will study the same problem but keep the planets in migration. The time asymmetry, which is unimportant in this paper, may cause an observable difference in the two Jupiter Trojan groups during a very fast planet migration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alexandersen, M., Gladman, B., Greenstreet, S., et al.: A uranian Trojan and the frequency of temporary giant-planet co-orbitals. Science 341, 994 (2013)

  • Beaugé, C., Roig, F.: A semi-analytical model for the motion of the Trojan asteroids: proper elements and families. Icarus 153, 391–415 (2001)

  • Biasco, L., Chierchia, L., Valdinoci, E.: Elliptic two-dimensional invariant tori for the planetary three-body problem. Arch. Ration. Mech. Anal. 170, 91–135 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Biasco, L., Chierchia, L., Valdinoci, E.: N-dimensional elliptic invariant tori for the planar (N+1)-body problem. SIAM J. Math. Anal. 37, 1560–1588 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Brasser, R., Mikkola, S., Huang, T.-Y., et al.: Long-term evolution of the Neptune Trojan 2001 QR322. Mon. Not. R. Astron. Soc. 347, 833–836 (2004)

    Article  ADS  Google Scholar 

  • Brasser, R., Morbidelli, A., Gomes, R., et al.: Constructing the secular architecture of the Solar system II: the terrestrial planets. Astron. Astrophys. 507, 1053–1065 (2009)

    Article  ADS  Google Scholar 

  • Celletti, A., Giorgilli, A.: On the stability of Lagrangian points in the spatial restricted problem of three bodies. Celest. Mech. Dyn. Astron. 50, 31–58 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Connors, M., Wiegert, P., Veillet, C.: Earth’s Trojan asteroid. Nature 475, 481–483 (2011)

  • Couetdic, J., Laskar, J., Correia, A.C.M., et al.: Dynamical stability analysis of the HD202206 system and constraints to the planetary orbits. Astron. Astrophys. 519, A10 (2010)

    Article  ADS  Google Scholar 

  • Díez, C., Jorba, À., Simó, C.: A dynamical equivalent to the equilateral libration points of the earth-moon system. Celest. Mech. Dyn. Astron. 50, 13–29 (1991)

    Article  ADS  MATH  Google Scholar 

  • Dufey, J., Noyelles, B., Rambaux, N., Lamaitre, A.: Latitudinal librations of Mercury with a fluid core. Icarus 203, 1–12 (2009)

    Article  ADS  Google Scholar 

  • Dvorak, R., Schwarz, R.: On the stability regions of the Trojan asteroids. Celest. Mech. Dyn. Astron. 92, 19–28 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Érdi, B.: Long periodic perturbations of Trojan asteroids. Celest. Mech. 43, 303–308 (1988)

    Article  ADS  MATH  Google Scholar 

  • Érdi, B., Forgács-Dajka, E., Süli, Á.: On some long time dynamical features of the Trojan asteroids of Jupiter. Celest. Mech. Dyn. Astron. 117, 3–16 (2013)

    Article  ADS  Google Scholar 

  • Freistetter, F.: The size of the stability regions of Jupiter Trojans. Astron. Astrophys. 453, 353–361 (2006)

    Article  ADS  Google Scholar 

  • Gabern, F., Jorba, À.: A restricted four-body model for the dynamics near the Lagrangian points of the Jun-Jupiter system. Discret. Contin. Dyn. Syst. 1, 143–182 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Gabern, F., Jorba, À., Robutel, P.: On the accuracy of restricted three-body models for the Trojan motion. Discret. Contin. Dyn. Syst. 11, 843–854 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Gabern, F., Jorba, À., Locatelli, U.: On the construction of the Kolmogorov normal form for the Trojan asteroids. Nonlinearility 18, 1705–1734 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Giorgilli, A., Delshams, A., Fontich, E., et al.: Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem. J. Differ. Equ. 77, 167–198 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Giorgilli, A., Skokos, C.: On the stability of the Trojan asteroids. A&A 317, 254–261 (1997)

    ADS  Google Scholar 

  • Gómez, G., Llibre, J., Martínez, R., Simó, C.: Dynamics and Mission Design near Libration Point Orbits, Vol. I, Fundamentals. The Case of Collinear Libration Points. World Scientific, Singapore (2001)

    Google Scholar 

  • Guzzo, M., Benettin, G.: On the stability of the Trojan asteroids. Discret. Contin. Dyn. Syst. Ser B 1, 1–28 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Hou, X.Y., Liu, L.: On quasi-periodic motions around the triangular libration points of the real Earth-Moon system. Celest. Mech. Dyn. Astron. 108, 301–313 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Hou, X.Y., Liu, L.: On quasi-periodic motions around the collinear libration points in the real Earth-Moon system. Celest. Mech. Dyn. Astron. 110, 71–98 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Hou, X.Y., Scheeres, D.J., Liu, L.: Saturn Trojans: a dynamical point of view. Mon. Not. R. Astron. Soc. 437, 1420–1433 (2014)

  • Jorba, À., Simó, C.: On quasi-periodic perturbations of elliptic equilibrium points. SIAM J. Math. Anal. 27, 1704–1737 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Jorba, À., Ramírez, R., Villanueva, J.: Effective reducibility of quasi-periodic linear equations close to constant coefficients. SIAM J. Math. Anal. 28, 178–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Jorba, À., Villanueva, J.: On the persistence of lower dimensional invariant tori under quasi-periodic perturbations. J. Nonlinear Sci. 7, 427–473 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Laskar, J.: Introduction to frequency map analysis. In: Simó, C. (ed.) Hamiltonian Systems with Three or More Degrees of Freedom, pp. 131–147. Kluwer, Spain (1999)

    Google Scholar 

  • Laskar, J.: Frequency map analysis and quasi periodic decompositions. In: Benest, et al. (eds.) Hamiltonian Systems and Fourier Analysis. Taylor and Francis, London (2005)

  • Laskar, J., Froeschlé, C., Celletti, A.: The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping. Physica D 56, 253–269 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Lei, H.-L., Xu, B.: High-order analytical solutions around the triangular libration points in CRTBP. Mon. Not. R. Astron. Soc. 434, 1376–1386 (2013)

    Article  ADS  Google Scholar 

  • Levison, H.F., Shoemaker, E.M., Shoemaker, C.S.: The dispersal of the Trojan asteroid swarm. Nature 385, 42–44 (1997)

    Article  ADS  Google Scholar 

  • Marzari, F., Scholl, H., Murray, C., Lagerkvist, C.: Origin and evolution of Trojan asteroids. Asteroids III, Tucson, pp. 725–738. University of Arizona Press, Arizona (2002)

    Google Scholar 

  • Marzari, F., Scholl, H.: On the instability of Jupiter’s Trojans. Icarus 159, 328–338 (2002)

    Article  ADS  Google Scholar 

  • Marzari, F., Scholl, H.: Long term stability of Earth Trojans. Celest. Mech. Dyn. Astron. 117, 91–100 (2013)

    Article  ADS  Google Scholar 

  • Michtchenko, T.A., Beaugé, C., Roig, F.: Planetary migration and the effects of mean motion resonances on Jupiter’s Trojan asteroids. AJ 122, 3485–3491 (2001)

    Article  ADS  Google Scholar 

  • Mikkola, S., Innanen, K.A., Muinonen, K., et al.: A preliminary analysis of the orbit of the Mars Trojan asteroid (5261) EUREKA. Celest. Mech. Dyn. Astron. 58, 53–64 (1994)

  • Milani, A., Nobili, A.M.: An example of stable chaos in the solar system. Nature 357, 569–571 (1992)

    Article  ADS  Google Scholar 

  • Milani, A.: The Trojan asteroid belt: proper elements, stability, chaos and families. Celest. Mech. Dyn. Astron. 57, 59–94 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R.: Chaotic capture of Jupiter’s Trojan asteroids in the earth solar system. Nature 435, 462–465 (2005)

    Article  ADS  Google Scholar 

  • Morbidelli, A., Brasser, R., Gomes, R., et al.: Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron. J. 140, 1391–1401 (2010)

    Article  ADS  Google Scholar 

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Nesvorný, D., Dones, L.: How long-lived are the hypothetical Trojan populations of Saturn, Uranus, and Neptune. Icarus 160, 271–288 (2002)

  • Nesvorný, D., Morbidelli, A.: Statistical study of the early Solar system’s instability with four, five, and six giant planets. Astron. J. 144, 117–136 (2012)

    Article  ADS  Google Scholar 

  • Nesvorný, D., Vokrouhlický, D., Morbidelli, A.: Capture of Trojans by jumping Jupiter. Astrophys. J. 768, 45–52 (2013)

    Article  ADS  Google Scholar 

  • Noyelles, B., Dufey, J., Lemaitre, A.: Core-mantle interactions for Mercury. Mon. Not. R. Astron. Soc. 407, 479–496 (2010)

    Article  ADS  Google Scholar 

  • O’Brien, D.P.: A dynamical origin of the leading/trailing asymmetry in Jupiter’s Trojan swarms? AAS/Div. Planet. Sci. Meet. Abstr. 44(210), 10 (2012)

    Google Scholar 

  • Porco, C.C., Baker, E., Barbara, J., et al.: Cassini imaging science: Initial results on Saturn’s rings and small satellites. Science 307, 1226–1236 (2005)

    Article  ADS  Google Scholar 

  • Quinlan, G.D., Tremaine, S.: Symmetric multistep methods for the numerical integration of planetary orbits. AJ 100, 1694–1700 (1990)

    Article  ADS  Google Scholar 

  • Rabe, E.: Third-order stability of the long-period Trojan librations. Astron. J. 72, 10–19 (1967)

    Article  ADS  Google Scholar 

  • Robutel, P., Gabern, F.: The resonant structure of Jupiter’s Trojan asteroids-I. Long-term stability and diffusion. Mon. Not. R. Astron. Soc. 372, 1463–1482 (2006)

    Article  ADS  Google Scholar 

  • Robutel, P., Bodossian, J.: The resonant structure of Jupiter’s Trojan asteroids-II. What happens for different configurations of the planetary system. Mon. Not. R. Astron. Soc. 339, 69–87 (2009)

    Article  ADS  Google Scholar 

  • Schwarz, R., Gyergyovits, M., Dvorak, R.: On the stability of high inclined L4 and L5 Trojans. Celest. Mech. Dyn. Astron. 90, 139–148 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Skokos, C., Dokoumetzidis, A.: Effective stability of the Trojan asteroids. Astron. Astrophys. 367, 729–736 (2001)

    Article  ADS  Google Scholar 

  • Szebehely, : Theory of Orbits. Academic Press, New York (1967)

  • Tsiganis, K., Varvoglis, H., Dvorak, R.: Chaotic diffusion and effective stability of Jupiter Trojans. Celest. Mech. Dyn. Astron. 92, 71–87 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was completed during the first author’s visit to the Colorado Center for Astrodynamics Research (CCAR). It was supported by the National Natural Science Foundation of China (11322330, 11078001), National Basic Research Program of China (2013CB834100), and National High Technology Research and Development Program 863 of China (2012AA 121602). The authors owe their thanks to Philippe Robutel and another anonymous referee for their critical and useful comments. The first author would also like to thank Prof. Liyong Zhou in his department for useful discussions on resonance mechanisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiyun Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Scheeres, D.J. & Liu, L. Dynamics of the Jupiter Trojans with Saturn’s perturbation in the present configuration of the two planets. Celest Mech Dyn Astr 119, 119–142 (2014). https://doi.org/10.1007/s10569-014-9544-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9544-9

Keywords

Navigation