Skip to main content
Log in

Chaotic Diffusion And Effective Stability of Jupiter Trojans

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

It has recently been shown that Jupiter Trojans may exhibit chaotic behavior, a fact that has put in question their presumed long term stability. Previous numerical results suggest a slow dispersion of the Trojan swarms, but the extent of the ‘effective’ stability region in orbital elements space is still an open problem. In this paper, we tackle this problem by means of extensive numerical integrations. First, a set of 3,200 fictitious objects and 667 numbered Trojans is integrated for 4 Myrs and their Lyapunov time, T L , is estimated. The ones following chaotic orbits are then integrated for 1 Gyr, or until they escape from the Trojan region. The results of these experiments are presented in the form of maps of T L and the escape time, T E , in the space of proper elements. An effective stability region for 1 Gyr is defined on these maps, in which chaotic orbits also exist. The distribution of the numbered Trojans follows closely the T E =1 Gyr level curve, with 86% of the bodies lying inside and 14% outside the stability region. This result is confirmed by a 4.5 Gyr integration of the 246 chaotic numbered Trojans, which showed that 17% of the numbered Trojans are unstable over the age of the solar system. We show that the size distributions of the stable and unstable populations are nearly identical. Thus, the existence of unstable bodies should not be the result of a size-dependent transport mechanism but, rather, the result of chaotic diffusion. Finally, in the large chaotic region that surrounds the stability zone, a statistical correlation between T L andT E is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. Beaugé F. Roig (2001) ArticleTitle‘A semianalytical model for the motion of the Trojan Asteroids: proper elements and families’ Icarus 153 391–415 Occurrence Handle10.1006/icar.2001.6699

    Article  Google Scholar 

  • A. Celletti A. Giorgilli (1991) ArticleTitle‘On the stability of the Lagrangian points in the spatial restricted problem of three bodies’ Celest. Mech. Dyn. Astr. 50 31–58 Occurrence Handle10.1007/BF00048985

    Article  Google Scholar 

  • R. Dvorak K. Tsiganis (2000) ArticleTitle‘Why do Trojan ASCs (not) escape?’ Celest. Mech. Dyn. Astr. 78 125–136 Occurrence Handle10.1023/A:1011120413687

    Article  Google Scholar 

  • B. Érdi (1988) ArticleTitle‘Long periodic perturbations of Trojan asteroids’ Celest. Mech. 43 303–308

    Google Scholar 

  • B. Érdi (1997) ArticleTitle‘The Trojan problem’ Celest. Mech. Dyn. Astr. 65 149–164 Occurrence Handle10.1007/BF00048444 Occurrence HandleMR1461603

    Article  MathSciNet  Google Scholar 

  • P. Farinella D. Vokrouhlický (1999) ArticleTitle‘Semi-major axis mobility of asteroid fragments’ Science 283 1507–1510 Occurrence Handle10.1126/science.283.5407.1507 Occurrence Handle10066167

    Article  PubMed  Google Scholar 

  • Y.R. Fernández S.S. Sheppard D. Jewitt (2003) ArticleTitle‘The Albedo distribution of Jovian Trojan asteroids’ Astron. J. 126 1563–1574 Occurrence Handle10.1086/377015

    Article  Google Scholar 

  • A. Giorgilli C. Skokos (1997) ArticleTitle‘On the stability of the Trojan asteroids’ Astron. Astrophys. 317 254–261

    Google Scholar 

  • R.S. Gomes (1998) ArticleTitle‘Dynamical effects of planetary migration on primordial Trojan-type asteroids’ Astron. J. 116 2590–2597 Occurrence Handle10.1086/300582

    Article  Google Scholar 

  • M. Lecar F. Franklin M. Murison (1992) ArticleTitle‘On predicting long-term orbital instability – A relation between the Lyapunov time and sudden orbital transitions’ Astron. J. 104 1230–1236 Occurrence Handle10.1086/116312

    Article  Google Scholar 

  • H.F. Levison M.J. Duncan (1994) ArticleTitle‘The long-term dynamical behavior of short-period comets’ Icarus 108 18–36 Occurrence Handle10.1006/icar.1994.1039

    Article  Google Scholar 

  • H. Levison E.M. Shoemaker C.S. Shoemaker (1997) ArticleTitle‘The dispersal of the Trojan asteroid swarm’ Nature 385 42–44 Occurrence Handle10.1038/385042a0

    Article  Google Scholar 

  • F. Marzari H. Scholl (2002) ArticleTitle‘On the Instability of Jupiter’s Trojans’ Icarus 159 328–338 Occurrence Handle10.1006/icar.2002.6904

    Article  Google Scholar 

  • F. Marzari P. Tricarico H. Scholl (2003) ArticleTitle‘Stability of Jupiter Trojans investigated using frequency map analysis: the MATROS project’ Mon. Not. R. Astron. Soc. 345 1091–1100 Occurrence Handle10.1046/j.1365-2966.2003.07051.x

    Article  Google Scholar 

  • A. Milani (1993) ArticleTitle‘The Trojan asteroid belt: proper elements, stability, chaos and families’ Celest. Mech. Dyn. Astron. 57 59–94 Occurrence Handle10.1007/BF00692462

    Article  Google Scholar 

  • Milani A., (1994), The Dynamics of the Trojan Asteroids. IAU Symp. 160: Asteroids, Comets, Meteors, 1993, pp. 159–174.

  • A. Milani A.M. Nobili (1992) ArticleTitle‘An example of stable chaos in the Solar System’ Nature 357 569–571 Occurrence Handle10.1038/357569a0

    Article  Google Scholar 

  • T.A. Michtchenko C. Beaugé F. Roig (2001) ArticleTitle‘Planetary migration and the effects of mean motion resonances on Jupiter’s Trojan asteroids’ Astron. J. 122 3485–3491 Occurrence Handle10.1086/324464

    Article  Google Scholar 

  • M.H.M. Morais (1999) ArticleTitle‘A secular theory for Trojan-type motion’ Astron. Astrophys. 350 318–326

    Google Scholar 

  • M.H.M. Morais (2001) ArticleTitle‘Hamiltonian formulation of the secular theory for Trojan-type motion’ Astron. Astrophys. 369 677–689 Occurrence Handle10.1051/0004-6361:20010141

    Article  Google Scholar 

  • N. Murray M. Holman (1997) ArticleTitle‘Diffusive chaos in the outer asteroid belt’ Astron. J. 114 1246–1259 Occurrence Handle10.1086/118558

    Article  Google Scholar 

  • F. Namouni C.D. Murray (2000) ArticleTitleThe effect of eccentricity and inclination on the motion near the Lagrangian points L4 and L5; Celest Mech. Dyn. Astron. 76 131–138 Occurrence Handle10.1023/A:1008385726569

    Article  Google Scholar 

  • D. Nesvorný L. Dones (2002) ArticleTitleHow long-lived are the hypothetical Trojan populations of Saturn, Uranus, and Neptune?’ Icarus 160 271–288 Occurrence Handle10.1006/icar.2002.6961

    Article  Google Scholar 

  • D. Nesvorný F. Thomas S. Ferraz-Mello A. Morbidelli (2002) ArticleTitle‘A perturbative treatment of the co-orbital motion’ Celest. Mech. Dyn. Astron. 82 323–361 Occurrence Handle10.1023/A:1015219113959

    Article  Google Scholar 

  • E. Rabe (1967) ArticleTitle‘Third-order stability of the long-period Trojan librations’ Astron. J. 72 10–19 Occurrence Handle10.1086/110196

    Article  Google Scholar 

  • P. Robutel F. Gabern A. Jorba (2005) ArticleTitle‘The observed Trojans and the global dynamics around the Lagrangian points of the Sun–Jupiter system’ Celest. Mech. Dynam. Astron. 92 55–71

    Google Scholar 

  • I.I. Shevchenko (1998) ArticleTitle‘On the recurrence and Lyapunov time scales of the motion near the chaos border’ Phys. Lett. A 241 53–60 Occurrence Handle10.1016/S0375-9601(98)00093-0

    Article  Google Scholar 

  • C. Skokos A. Dokoumetzidis (2001) ArticleTitle‘Effective stability of the Trojan asteroids’ Astron. Astrophys. 367 729–736 Occurrence Handle10.1051/0004-6361:20000456

    Article  Google Scholar 

  • K. Tsiganis R. Dvorak E. Pilat-Lohinger (2000) ArticleTitle‘Thersites: a ‘jumping’ Trojan?’ Astron. Astrophys. 354 1091–1100

    Google Scholar 

  • K. Tsiganis H. Varvoglis J.D. Hadjidemetriou (2000) ArticleTitle‘Stable chaos in the 12:7 mean motion resonance and its relation to the stickiness effect’ Icarus 146 240–252 Occurrence Handle10.1006/icar.2000.6382

    Article  Google Scholar 

  • K. Tsiganis H. Varvoglis J.D. Hadjidemetriou (2002) ArticleTitle‘Stable chaos in high-order Jovian resonances’ Icarus 155 454–474 Occurrence Handle10.1006/icar.2001.6737

    Article  Google Scholar 

  • K. Tsiganis H. Varvoglis J.D. Hadjidemetriou (2002) ArticleTitle‘Stable chaos versus Kirkwood gaps in the asteroid belt: a comparative study of mean motion resonances’ Icarus 159 284–299 Occurrence Handle10.1006/icar.2002.6927

    Article  Google Scholar 

  • J. Wisdom M. Holman (1991) ArticleTitle‘Symplectic maps for the n-body problem’ Astron. J. 102 1528–1538 Occurrence Handle10.1086/115978

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kleomenis Tsiganis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsiganis, K., Varvoglis, H. & Dvorak, R. Chaotic Diffusion And Effective Stability of Jupiter Trojans. Celestial Mech Dyn Astr 92, 71–87 (2005). https://doi.org/10.1007/s10569-004-3975-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-004-3975-7

Keywords

Navigation