Skip to main content
Log in

High order normal form stability estimates for co-orbital motion

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We present estimates of the size of the analytic domain of stability for co-orbital motions obtained by a high order normal form in the framework of the elliptic restricted three body problem. As a demonstration example, we consider the motion of a Trojan body in an extrasolar planetary system with a giant planet of mass parameter \(\mu =0.005\) and eccentricity \(e^{\prime }=0.1\). The analysis contains three basic steps: (i) derivation of an accurate expansion of the Hamiltonian, (ii) computation of the normal form up to an optimal order (in the Nekhoroshev sense), and (iii) computation of the optimal size of the remainder at various values of the action integrals (proper elements) of motion. We explain our choice of variables as well as the method used to expand the Hamiltonian so as to ensure a precise model. We then compute the normal form up to the normalisation order \(r=50\) by use of a computer-algebraic program. We finally estimate the size \(||R||\) of the remainder as a function of the normalization order, and compute the optimal normalization order at which the remainder becomes minimum. It is found that the optimal value \(\log (||R_{opt}||)\) can serve in order to construct a stability map for the domain of co-orbital motion using only series. This is compared to the stability map found by a purely numerical approach based on chaotic indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beaugé, C., Roig, F.: A semianalytical model for the motion of the Trojan asteroids: proper elements and families 2001. Icarus 153, 391–415 (2001)

    Article  ADS  Google Scholar 

  • Benettin, G., Galgani, L., Giorgilli, A.: A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems. Cel. Mech. 37, 1–25 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Benettin, G., Fassó, F., Guzzo, M.: Nekhorosev stability of L4 and L5 in the spatial retricted three body problem. Regul. Chaot. Dyn. 3, 56–72 (1998)

    Article  MATH  Google Scholar 

  • Brown, E.W., Shook, C.A.: Planetary Theory, p. 256. Cambridge University Press, New York (1964)

    Google Scholar 

  • Celletti, A., Giorgilli, A.: On the stability of the Lagrangian points in the spatial restricted problem of three bodies. Celest. Mech. Dyn. Astron. 50, 31–58 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dvorak, R., Pilat-Lohinger, E., Schwarz, R., Freistetter, F.: Extrasolar Trojan planets close to habitable zones. Astron. Astrophys. 426, 37–40 (2004)

    Article  ADS  Google Scholar 

  • Di Ruzza, S., Lhotka, C.: High order normal form construction near the elliptic orbit of the Sitnikov problem. Cel. Mech. Dyn. Astron. 111(4), 449–464 (2011)

    Article  ADS  MATH  Google Scholar 

  • Efthymiopoulos, C., Giorgilli, A., Contopoulos, G.: Nonconvergence of formal integrals II: improved estimates for the optimal order of truncation. J. Phys. A Math. Gen. 37, 10831–10858 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Efthymiopoulos, C.: Formal integrals and Nekhoroshev stability in a mapping model for the Trojan asteroids. Celest. Mech. Dyn. Astron. 92, 29–52 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Efthymiopoulos, C., Sándor, Z.: Optimized Nekhoroshev estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion. MNRAS 364, 253–271 (2005)

    Article  ADS  Google Scholar 

  • Efthymiopoulos, C.: Canonical perturbation theory, stability and difusion in Hamiltonian systems: applications in dynamical astronomy. In: P. M. Cincotta, C. M. Giordano, C. Efthymiopoulos (eds.) Proceedings of the Third La Plata International School on Astronomy and Geophysics: Chaos, Difusion and Non-integrability in Hamiltonian Systems, Asociación Argentina de Astronomía (2012)

  • Erdi, B., Nagy I, Sándor Zs., Süli, A., Fröhlich G.: Secondary resonances of co-orbital motions. MNRAS 381, 33–40 (2007)

    Google Scholar 

  • Erdi, B., Sándor, Z.: Stability of co-orbital motion in exoplanetary systems MNRAS. Celest. Mech. Dyn. Astron. 92, 113–121 (2005)

    Article  ADS  MATH  Google Scholar 

  • Froeschlé, C., Lega, E., Gonczi, R.: Fast Lyapunov indicators. Application to asteroidal motion. Cel. Mech. Dyn. Astron. 67, 41–62 (1997)

    Google Scholar 

  • Froeschlé, C., Guzzo, M., Lega, E.: Graphical evolution of the Arnold web: from order to chaos. Science 289(5487), 2108–2110 (2000)

    Google Scholar 

  • Gabern, F., Jorba, A., Locatelli, U.: On the construction of the Kolmogorov normal form for the Trojan asteroids. Nonlinearity 18, 1705–1734 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Giorgilli, A., Skokos, Ch.: On the stability of the Trojan asteroids. Astron. Astrophys. 317, 254–261 (1997)

    ADS  Google Scholar 

  • Giorgilli, A.: Notes on exponential stability of Hamiltonian systems, in dynamical systems. Hamiltonian Systems and Celestial Mechanics, Pubblicazioni della Classe di Scienze, Scuola Normale Superiore, Pisa, Part I (2002)

  • Levison, H., Shoemaker, E.M., Shoemaker, C.S.: Dynamical evolution of Jupiter’s Trojan asteroids. Nature 385, 42–44 (1997)

    Article  ADS  Google Scholar 

  • Lhotka, Ch., Efthymiopoulos, C., Dvorak, R.: Nekhoroshev stability at L4 or L5 in the elliptic-restricted three-body problem: application to Trojan asteroids. MNRAS 384, 1165–1177 (2008)

    Article  ADS  Google Scholar 

  • Marzari, F., Tricarino, P., Scholl, H.: Stability of Jupiter Trojans investigated using frequency map analysis: the MATROS project. MNRAS 345, 1091–1100 (2003)

    Article  ADS  Google Scholar 

  • Milani, A.: The Trojan asteroid belt: proper elements, stability, chaos and families. Celest. Mech. Dyn. Astron. 57, 59–94 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Nekhoroshev, N.N.: Exponential estimates of the stability time of near-integrable in Hamiltonian systems. Russ. Math. Surv. 32(6), 1–65 (1977)

    Article  MATH  Google Scholar 

  • Nesvorny, D., Thomas, F., Ferraz-Mello, S., Morbidelli, A.: A perturbative treatment of the co-orbital motion. Celest. Mech. Dyn. Astron. 82, 323–361 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Robutel, P., Gabern, F., Jorba, A.: The observed Trojans and the global dynamics around the Lagrangian points of the Sun Jupiter system. Celest. Mech. Dyn. Astron. 92, 53–69 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Robutel, P., Gabern, F.: The resonant structure of Jupiter’s Trojan asteroids: I. Long-term stability and diffusion. MNRAS 372, 1463–1482 (2006)

    Article  ADS  Google Scholar 

  • Robutel, P., Souchay, J.: An introduction to the dynamics of Trojan asteroids. Lect. Not. Phys. 790, 195–227 (2010)

    Article  ADS  Google Scholar 

  • Sándor, Z., Erdi, B.: Symplectic mapping for Trojan-type motion in the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 86, 301–319 (2003)

    Article  ADS  MATH  Google Scholar 

  • Sansottera, M., Locatelli, U., Giorgilli, A.: A semi-analytic algorithm for constructing lower dimensional elliptic tori in planetary systems. Cel. Mech. Dyn. Astron. 111(3), 337–361 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Schwarz, R., Dvorak, R., Pilat-Lohinger, E., Süli, A., Erdi, B.: Trojan planets in HD 108874. Astron. Astrophys. 462, 1165–1170 (2007)

    Article  ADS  Google Scholar 

  • Tsiganis, K., Varvoglis, H., Dvorak, R.: Chaotic diffusion and effective stability of Jupiter Trojans. Celest. Mech. Dyn. Astron. 92, 71–87 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank L. Darriba and R. Paez for helping in parts of the computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Efthymiopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efthymiopoulos, C. High order normal form stability estimates for co-orbital motion. Celest Mech Dyn Astr 117, 101–112 (2013). https://doi.org/10.1007/s10569-013-9507-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-013-9507-6

Keywords

Navigation