Skip to main content
Log in

Formation of the extreme Kuiper-belt binary 2001 QW322 through adiabatic switching of orbital elements

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Binaries in the Kuiper-belt are unlike all other known binaries in the Solar System. Both their physical and orbital properties are highly unusual and, because these objects are thought to be relics dating back to the earliest days of the Solar System, understanding how they formed may provide valuable insight into the conditions which then prevailed. A number of different mechanisms for the formation of Kuiper-belt binaries (KBBs) have been proposed including; two-body collisions inside the Hill sphere of a larger body; strong dynamical friction; exchange reactions; and chaos assisted capture. So far, no clear consensus has emerged as to which of these mechanisms (if any) can best explain the observed population of KBBs. Indeed, the recent characterization of the mutual orbit of the symmetric (i.e., roughly equal mass) KBB 2001 QW322 has only served to complicate the picture because its orbit does not seem readily explicable by any of the available models. The binary 2001 QW322 stands out even among the already unusual population of KBBs for the following reasons: its mutual orbit is extremely large (≈105 km or about 30% of the Hill sphere radius), retrograde, it is inclined ≈120° from the ecliptic and has very low eccentricity, i.e., e ≤ 0.4 (and possibly e ≤ 0.05). Here we propose a hybrid formation mechanism for this object which combines aspects of several of the mechanisms already proposed. Initially two objects are temporarily trapped in a long-living chaotic orbit that lies close to a retrograde periodic orbit in the three-dimensional Hill problem. This is followed by capture through gravitational scattering with a small intruder object. Finally, weak dynamical friction gradually switches the original orbit “adiabatically” into a large, almost circular, retrograde orbit similar to that actually observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astakhov S.A., Burbanks A.D., Wiggins S., Farrelly D.: Chaos-assisted capture of irregular moons. Nature 423, 264–267 (2003)

    Article  ADS  Google Scholar 

  • Astakhov S.A., Farrelly D.: Capture and escape in the elliptic restricted three-body problem. Mon. Not. Roy. Astron. Soc. 354, 971–979 (2004)

    Article  ADS  Google Scholar 

  • Astakhov S.A., Lee E.A., Farrelly D.: Formation of Kuiper-belt binaries through multiple chaotic scattering encounters with low-mass intruders. Mon. Not. Roy. Astron. Soc. 360, 401–415 (2005)

    Article  ADS  Google Scholar 

  • Circi C., Teofilatto P.: Effect of planetary eccentricity on ballistic capture in the solar system. Celes. Mech. Dyn. Astron. 93, 69–86 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Danby J.M.: Fundamentals of Celestial Mechanics, 2nd edn, pp. 255–270. Willmann-Bell, Richmond, VA (1992)

    Google Scholar 

  • Deprit A., Williams C.A.: The Lissajous transformation IV. Delaunay and Lissajous variables. Celes. Mech. Dyn. Astron. 51, 271–280 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Ferraz-Mello S., Rodríguez A., Hussmann H.: Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited. Celes. Mech. Dyn. Astron. 101, 171–201 (2008)

    Article  MATH  ADS  Google Scholar 

  • Frœschlé C., Guzzo M., Lega E.: Graphical evolution of the Arnold web: from order to chaos. Science 289, 2108–2110 (2000)

    Article  ADS  Google Scholar 

  • Frœschlé C., Lega E., Guzzo M.: Analysis of the chaotic behavior of orbits diffusing along the Arnold web. Celes. Mech. Dyn. Astron. 95, 141–153 (2006)

    Article  MATH  ADS  Google Scholar 

  • Funato Y., Makino J., Hut P., Kokubo E., Kinoshita D.: The formation of Kuiper-belt binaries through exchange reactions. Nature 427, 518–520 (2004)

    Article  ADS  Google Scholar 

  • Goldreich P., Lithwick Y., Sari R.: Formation of Kuiper-belt binaries by dynamical friction and three-body encounters. Nature 420, 643–646 (2002)

    Article  ADS  Google Scholar 

  • Goldreich P., Lithwick Y., Sari R.: Planet formation by coagulation: A focus on Uranus and Neptune. Annu. Rev. Astron. Astrophys. 42, 549–601 (2004)

    Article  ADS  Google Scholar 

  • Gomes R.S.: On the origin of the Kuiper belt. Celes. Mech. Dyn. Astron. 104, 39–51 (2009)

    Article  MATH  ADS  Google Scholar 

  • Kandrup H.E., Sideris I.V.: Chaos in cuspy triaxial galaxies with a supermassive black hole: a simple toy model. Celes. Mech. Dyn. Astron. 82, 61–81 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kenyon S.J., Luu J.X.: Accretion in the early outer solar system. Ap. J. 526, 465–470 (1999)

    Article  ADS  Google Scholar 

  • Lee E.A., Astakhov S.A., Farrelly D.: Production of trans-Neptunian binaries through chaos-assisted capture. Mon. Not. Roy. Astron. Soc. 379, 229–246 (2007)

    Article  ADS  Google Scholar 

  • Levi Civita T.: Sur la résolution qualitative du probléme restreint des trois corps. Acta. Math. 30, 305–327 (1906)

    Article  MATH  MathSciNet  Google Scholar 

  • Lichtenberg A.J., Lieberman M.A.: Regular and Chaotic Dynamics, 2nd edn, pp. 380–386. Springer, New York (1992)

    MATH  Google Scholar 

  • Makó Z., Szenkovits F.: Capture in the circular and elliptic restricted three-body problem. Celes. Mech. Dyn. Astron. 90, 51–58 (2004)

    Article  MATH  ADS  Google Scholar 

  • Noll K.S.: Transneptunian binaries. Earth Moon Planets 92, 395–407 (2003)

    Article  ADS  Google Scholar 

  • Perry A.D., Wiggins S.: KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow. Physica D 71, 101–121 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  • Petit J.-M., Henon M.: Series expansions for encounter-type solutions of Hill’s problem. Cel. Mech. 38, 67–100 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Petit J.M., Mousis O.: KBO binaries: How numerous were they?. Icarus 168, 409–419 (2004)

    Article  ADS  Google Scholar 

  • Petit J.M., Kavelaars J.J., Gladman B.J., Margot J.L., Nicholson P.D., Jones R.L., Parker J.W., Ashby M.L.N., Bagatin A.C., Benavidez P., Coffey J., Rousselot P., Mousis O., Taylor P.A.: The extreme Kuiper-belt binary 2001 QW322. Science 322, 432–434 (2008)

    Article  ADS  Google Scholar 

  • Queck M., Krivov A.V., Sremc̆ević M., Thébault P.: Collisional velocities and rates in resonant planetesimal belts. Celes. Mech. Dyn. Astron. 99, 169–196 (2007)

    Article  MATH  ADS  Google Scholar 

  • Schlichting H.E., Sari R.: Formation of Kuiper belt binaries. Ap. J. 673, 1218–1224 (2008)

    Article  ADS  Google Scholar 

  • Simó C., Stuchi T.J.: Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem. Physica D 140, 1–32 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Skodje R.T., Cary J.R.: An analysis of the adiabatic switching method - Foundations and applications. Comp. Phys. Rep. 8, 223–292 (1998)

    Google Scholar 

  • Stiefel E.L., Scheifle G.: Linear and Regular Celestial Mechanics. Springer, Berlin (1971)

    MATH  Google Scholar 

  • Weidenschilling S.J.: On the origin of binary transneptunian objects. Icarus 160, 212–215 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Farrelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamboa Suárez, A., Hestroffer, D. & Farrelly, D. Formation of the extreme Kuiper-belt binary 2001 QW322 through adiabatic switching of orbital elements. Celest Mech Dyn Astr 106, 245–259 (2010). https://doi.org/10.1007/s10569-010-9257-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9257-7

Keywords

Navigation