Skip to main content
Log in

Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

An Erratum to this article was published on 16 April 2009

Abstract

This report is a review of Darwin’s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander M.E.: The weak friction approximation and tidal evolution in close binary systems. Astrophys. Space Sci. 23, 459–510 (1973)

    Article  ADS  Google Scholar 

  • Beutler G.: Methods of Celestial Mechanics, vol. I. Springer, Berlin (2005)

    MATH  Google Scholar 

  • Chandrasekhar S.: Ellipsoidal Figures of Equilibrium, chap. VIII. Yale Univ. Press, New Haven (1969)

    Google Scholar 

  • Darwin, G.H.: On the precession of a viscous spheroid and on the remote history of the Earth. Philos. Trans. 170, 447–530 (repr. Scientific Papers, Cambridge, vol. II, 1908) (1879).

  • Darwin, G.H.: On the secular change in the elements of the orbit of a satellite revolving about a tidally distorted planet. Philos. Trans. 171, 713–891 (repr. Scientific Papers, Cambridge, Vol. II, 1908) (1880)

    Google Scholar 

  • Dobbs-Dixon I., Lin D.N.C., Mardling R.A.: Spin-orbit evolution of short-period planets. Astrophys. J. 610, 464–476 (2004)

    Article  ADS  Google Scholar 

  • Efroimsky M., Lainey V.: Physics of bodily tides in terrestrial planets and the appropriate scales of dynamical evolution. J. Geophys. Res. 112, E12003 (2007)

    Article  ADS  Google Scholar 

  • Efroimsky, M.: Tidal torques. I. A critical review of some techniques. Cel. Mech. Dynam. Astron. (submitted, 2008)

  • Eggleton P.P., Kiseleva L.G., Hut P.: The equilibrium tide model for tidal friction. Astrophys. J. 499, 853–870 (1998)

    Article  ADS  Google Scholar 

  • Goldreich P.: On the eccentricity of satellite orbits in the solar system. Mon. Not. R. Astron. Soc 126, 257–268 (1963)

    ADS  MATH  Google Scholar 

  • Goldreich P.: Final spin states of planets and satellites. Astron. J. 71, 1–7 (1966)

    Article  ADS  Google Scholar 

  • Goldreich P., Soter S.: Q in the solar system. Icarus 5, 375–389 (1966)

    Article  ADS  Google Scholar 

  • Hut P.: Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981)

    ADS  MATH  Google Scholar 

  • Jeans, J.: Astronomy and Cosmogony, Sec. 215–216 (repr: Dover, New York, 1961). CUP, Cambridge (1929)

  • Jeffreys H.: The effect of tidal friction on eccentricity and inclination. Mon. Not. R. Astron. Soc 122, 339–343 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  • Kaula W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. 3, 661–685 (1964)

    Article  ADS  Google Scholar 

  • Lemaitre A., D’Hoedt S., Rambaux N.: The 3:2 spin-orbit resonant motion of Mercury. Cel. Mech. Dynam. Astron. 95, 213–224 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Levrard B.: A proof that tidal heating in a synchronous rotation is always larger than in an asymptotic nonsynchronous rotation state. Icarus 193, 641–643 (2008)

    Article  ADS  Google Scholar 

  • Love A.E.H.: A Treatise on the Mathematical Theory of Elasticity. CUP, Cambridge (1927)

    MATH  Google Scholar 

  • MacDonald G.F.: Tidal friction. Rev. Geophys. 2, 467–541 (1964)

    Article  ADS  Google Scholar 

  • Mardling R.A., Lin D.N.C.: On the survival of short-period terrestrial planets. Astrophys. J. 614, 955–959 (2004)

    Article  ADS  Google Scholar 

  • Mignard F.: The evolution of the lunar orbit revisited—I. Moon Planets 20, 301–315 (1979)

    Article  ADS  MATH  Google Scholar 

  • Mignard F.: The evolution of the lunar orbit revisited—II. Moon Planets 23, 185–201 (1980)

    Article  ADS  Google Scholar 

  • Munk W.H., MacDonald G.J.F.: The rotation of the Earth. CUP, Cambridge (1960)

    Google Scholar 

  • Peale S.J., Cassen P., Reynolds R.T.: Tidal dissipation, orbital evolution and the nature of Saturn’s inner satellites. Icarus 43, 65–72 (1980)

    Article  ADS  Google Scholar 

  • Sears W.D., Lunine J.I., Greenberg R.: Equilibrium nonsynchronous rotation of Titan. Icarus 105, 259–262 (1993)

    Article  ADS  Google Scholar 

  • Segatz M., Spohn T., Ross M.N., Schubert G.: Tidal dissipation, surface heat flow and figure of viscoelastic models of Io. Icarus 75, 187–206 (1988)

    Article  ADS  Google Scholar 

  • Tisserand F.: Traité de Mécanique Céleste, tome II, chap VIII. Gauthier-Villars, Paris (1891)

    Google Scholar 

  • Wahr J.M., Sasao T.: A diurnal resonance in the ocean tide and in the Earth’s load response due to the resonant free core nutation. Geophys. J. Roy. Astr. Soc. 64, 747–765 (1981)

    ADS  MATH  Google Scholar 

  • Williams J.G., Turyshev S.G., Boggs D.H., Ratcliff J.T.: Lunar laser ranging science: gravitational physics and lunar interior and geodesy. Adv. Space Res. 37, 67–71 (2006)

    Article  ADS  Google Scholar 

  • Winn J.N., Holman M.J.: Obliquity tides on hot Jupiters. Astrophys. J. Lett. 628, L159–L162 (2005)

    Article  ADS  Google Scholar 

  • Wisdom J.: Spin-orbit secondary resonance dynamics of Enceladus. Astron. J. 128, 484–491 (2004)

    Article  ADS  Google Scholar 

  • Wisdom J.: Tidal dissipation at arbitrary eccentricity and inclination. Icarus 193, 637–640 (2008)

    Article  ADS  Google Scholar 

  • Yoder C.F., Peale S.J.: The tides of Io. Icarus 47, 1–35 (1981)

    Article  ADS  Google Scholar 

  • Zahn J.P.: Tidal friction in close binary stars. Astron. Astrophys. 57, 383–394 (1977)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvio Ferraz-Mello.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10569-009-9198-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraz-Mello, S., Rodríguez, A. & Hussmann, H. Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited. Celest Mech Dyn Astr 101, 171–201 (2008). https://doi.org/10.1007/s10569-008-9133-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-008-9133-x

Keywords

Navigation