Skip to main content
Log in

Cooperative antiproliferative signaling by aspirin and indole-3-carbinol targets microphthalmia-associated transcription factor gene expression and promoter activity in human melanoma cells

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Antiproliferative signaling of combinations of the nonsteroidal anti-inflammatory drug acetylsalicylic acid (aspirin) and indole-3-carbinol (I3C), a natural indolecarbinol compound derived from cruciferous vegetables, was investigated in human melanoma cells. Melanoma cell lines with distinct mutational profiles were sensitive to different extents to the antiproliferative response of aspirin, with oncogenic BRAF-expressing G361 cells and wild-type BRAF-expressing SK-MEL-30 cells being the most responsive. I3C triggered a strong proliferative arrest of G361 melanoma cells and caused only a modest decrease in the proliferation of SK-MEL-30 cells. In both cell lines, combinations of aspirin and I3C cooperatively arrested cell proliferation and induced a G1 cell cycle arrest, and nearly ablated protein and transcript levels of the melanocyte master regulator microphthalmia-associated transcription factor isoform M (MITF-M). In melanoma cells transfected with a −333/+120-bp MITF-M promoter-luciferase reporter plasmid, treatment with aspirin and I3C cooperatively disrupted MITF-M promoter activity, which accounted for the loss of MITF-M gene products. Mutational analysis revealed that the aspirin required the LEF1 binding site, whereas I3C required the BRN2 binding site to mediate their combined and individual effects on MITF-M promoter activity. Consistent with LEF1 being a downstream effector of Wnt signaling, aspirin, but not I3C, downregulated protein levels of the Wnt co-receptor LDL receptor-related protein-6 and β-catenin and upregulated the β-catenin destruction complex component Axin. Taken together, our results demonstrate that aspirin-regulated Wnt signaling and I3C-targeted signaling pathways converge at distinct DNA elements in the MITF-M promoter to cooperatively disrupt MITF-M expression and melanoma cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BRN2:

Brain-2

COX:

Cyclooxygenase

LEF1:

Lymphoid enhancer-binding factor 1

I3C:

Indole-3-carbinol

MITF-M:

Microphthalmia-associated transcription factor isoform M

NEDD4-1:

Neural precursor cell expressed developmentally downregulated 4

References

  • Aggarwal BB, Ichikawa H. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle. 2005;4:1201–15.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Sakr WA, Rahman KM. Novel targets for detection of cancer and their modulation by chemopreventive natural compounds. Front Biosci (Elite Ed). 2012;4:410–25.

    Article  Google Scholar 

  • Aronchik I, Bjeldanes LF, Firestone GL. Direct inhibition of elastase activity by indole-3-carbinol triggers a CD40-TRAF regulatory cascade that disrupts NF-kappaB transcriptional activity in human breast cancer cells. Cancer Res. 2010;70:4961–71.

    Article  CAS  PubMed  Google Scholar 

  • Aronchik I, Chen T, Durkin KA, Horwitz MS, Preobrazhenskaya MN, Bjeldanes LF, et al. Target protein interactions of indole-3-carbinol and the highly potent derivative 1-benzyl-I3C with the C-terminal domain of human elastase uncouples cell cycle arrest from apoptotic signaling. Mol Carcinog. 2012;51:881–94.

    Article  CAS  PubMed  Google Scholar 

  • Aronchik I, Kundu A, Quirit JG, Firestone GL. The antiproliferative response of indole-3-carbinol in human melanoma cells is triggered by an interaction with NEDD4-1 and disruption of wild-type PTEN degradation. Mol Cancer Res. 2014;12:1621–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjorklund P, Svedlund J, Olsson AK, Akerstrom G, Westin G. The internally truncated LRP5 receptor presents a therapeutic target in breast cancer. PLoS One. 2009;4, e4243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bos CL, Kodach LL, van den Brink GR, Diks SH, van Santen MM, Richel DJ, et al. Effect of aspirin on the Wnt/beta-catenin pathway is mediated via protein phosphatase 2A. Oncogene. 2006;25:6447–56.

    Article  CAS  PubMed  Google Scholar 

  • Carreira S, Goodall J, Aksan I, La Rocca SA, Galibert MD, Denat L, et al. Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature. 2005;433:764–9.

    Article  CAS  PubMed  Google Scholar 

  • Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 2006;20:3426–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan AT, Ogino S, Fuchs CS. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med. 2007;356:2131–42.

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Mollica MY, Lee SH, Wang L, Velazquez-Martinez CA, Wu S. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion. Toxicol Appl Pharmacol. 2012;264:161–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikazawa N, Tanaka H, Tasaka T, Nakamura M, Tanaka M, Onishi H, et al. Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells. Anticancer Res. 2010;30:2041–8.

    CAS  PubMed  Google Scholar 

  • Cirenajwis H, Ekedahl H, Lauss M, Harbst K, Carneiro A, Enoksson J, et al. Molecular stratification of metastatic melanoma using gene expression profiling: prediction of survival outcome and benefit from molecular targeted therapy. Oncotarget. 2015;6:12297–309.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–205.

    Article  CAS  PubMed  Google Scholar 

  • Cope RB, Loehr C, Dashwood R, Kerkvliet NI. Ultraviolet radiation-induced non-melanoma skin cancer in the Crl:SKH1:hr-BR hairless mouse: augmentation of tumor multiplicity by chlorophyllin and protection by indole-3-carbinol. Photochem Photobiol Sci. 2006;5:499–507.

    Article  CAS  PubMed  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  CAS  PubMed  Google Scholar 

  • Drdova B, Vachtenheim J. Repression of the melanocyte-specific promoter of the microphthalmia-associated transcription factor by the adenoviral E1A 12S oncoprotein. Folia Biol. 2004;50:159–66.

    CAS  Google Scholar 

  • Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE, et al. Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell. 2004;6:565–76.

    Article  CAS  PubMed  Google Scholar 

  • Firestone GL, Bjeldanes LF. Indole-3-carbinol and 3-3′-diindolylmethane antiproliferative signaling pathways control cell-cycle gene transcription in human breast cancer cells by regulating promoter-Sp1 transcription factor interactions. J Nutr. 2003;133:2448S–55S.

    PubMed  Google Scholar 

  • Firestone GL, Sundar SN. Minireview: Modulation of hormone receptor signaling by dietary anticancer indoles. Mol Endocrinol. 2009;23:1940–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flossmann E, Rothwell PM. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet. 2007;369:1603–13.

    Article  CAS  PubMed  Google Scholar 

  • Flower R. What are all the things aspirin does? Br Med J. 2003;327:572–3.

    Article  Google Scholar 

  • Gala MK, Chan AT. Molecular pathways: aspirin and Wnt signaling—a molecularly targeted approach to cancer prevention and treatment. Clin Cancer Res. 2015;21:1543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamba CA, Swetter SM, Stefanick ML, Kubo J, Desai M, Spaunhurst KM, et al. Aspirin is associated with lower melanoma risk among postmenopausal Caucasian women: the Women’s Health Initiative. Cancer. 2013;119:1562–9.

    Article  CAS  PubMed  Google Scholar 

  • Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436:117–22.

    Article  CAS  PubMed  Google Scholar 

  • Goodall J, Wellbrock C, Dexter TJ, Roberts K, Marais R, Goding CR. The Brn-2 transcription factor links activated BRAF to melanoma proliferation. Mol Cell Biol. 2004;24:2923–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445:851–7.

    Article  CAS  PubMed  Google Scholar 

  • Haq R, Fisher DE. Biology and clinical relevance of the microphthalmia family of transcription factors in human cancer. J Clin Oncol. 2011;29:3474–82.

    Article  CAS  PubMed  Google Scholar 

  • Hawryluk EB, Tsao H. Melanoma: clinical features and genomic insights. Cold Spring Harb Perspect Med. 2014;4:a015388.

    Article  PubMed  Google Scholar 

  • Kim DS, Jeong YM, Moon SI, Kim SY, Kwon SB, Park ES, et al. Indole-3-carbinol enhances ultraviolet B-induced apoptosis by sensitizing human melanoma cells. Cell Mol Life Sci. 2006;63:2661–8.

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Kima DS, Jeong YM, Moon SI, Kwon SB, Park KC. Indole-3-carbinol and ultraviolet B induce apoptosis of human melanoma cells via down-regulation of MITF. Pharmazie. 2011;66:982–7.

    CAS  PubMed  Google Scholar 

  • Kim KB, Kefford R, Pavlick AC, Infante JR, Ribas A, Sosman JA, et al. Phase II study of the MEK1/MEK2 inhibitor trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol. 2013;31:482–9.

    Article  CAS  PubMed  Google Scholar 

  • King AJ, Arnone MR, Bleam MR, Moss KG, Yang J, Fedorowicz KE, et al. Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while BRAF/MEK tool combination reduced skin lesions. PLoS One. 2013;8, e67583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochel TJ, Fulton AM. Multiple drug resistance-associated protein 4 (MRP4), prostaglandin transporter (PGT), and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) as determinants of PGE2 levels in cancer. Prostaglandins Other Lipid Mediat. 2015;116–117:99–103.

    Article  PubMed  Google Scholar 

  • Kopp E, Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science. 1994;265:956–9.

    Article  CAS  PubMed  Google Scholar 

  • Kundu A, Quirit JG, Khouri MG, Firestone GL. Inhibition of oncogenic BRAF activity by indole-3-carbinol disrupts microphthalmia-associated transcription factor expression and arrests melanoma cell proliferation. Mol Carcinog. 2016.

  • Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med. 2006;12:406–14.

    Article  CAS  PubMed  Google Scholar 

  • MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marconett CN, Sundar SN, Poindexter KM, Stueve TR, Bjeldanes LF, Firestone GL. Indole-3-carbinol triggers aryl hydrocarbon receptor-dependent estrogen receptor (ER)alpha protein degradation in breast cancer cells disrupting an ERalpha-GATA3 transcriptional cross-regulatory loop. Mol Biol Cell. 2010;21:1166–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marconett CN, Sundar SN, Tseng M, Tin AS, Tran KQ, Mahuron KM, et al. Indole-3-carbinol downregulation of telomerase gene expression requires the inhibition of estrogen receptor-alpha and Sp1 transcription factor interactions within the hTERT promoter and mediates the G1 cell cycle arrest of human breast cancer cells. Carcinogenesis. 2011;32:1315–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruthanila VL, Poornima J, Mirunalini S. Attenuation of carcinogenesis and the mechanism underlying by the influence of indole-3-carbinol and its metabolite 3,3′-diindolylmethane: a therapeutic marvel. Adv Pharmacol Sci. 2014;2014:832161.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell. 2002;109:707–18.

    Article  CAS  PubMed  Google Scholar 

  • Mosimann C, Hausmann G, Basler K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol. 2009;10:276–86.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HH, Aronchik I, Brar GA, Nguyen DH, Bjeldanes LF, Firestone GL. The dietary phytochemical indole-3-carbinol is a natural elastase enzymatic inhibitor that disrupts cyclin E protein processing. Proc Natl Acad Sci U S A. 2008;105:19750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierrat MJ, Marsaud V, Mauviel A, Javelaud D. Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-beta. J Biol Chem. 2012;287:17996–8004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev. 2007;17:45–51.

    Article  CAS  PubMed  Google Scholar 

  • Reed GA, Peterson KS, Smith HJ, Gray JC, Sullivan DK, Mayo MS, et al. A phase I study of indole-3-carbinol in women: tolerability and effects. Cancer Epidemiol Biomarkers Prev. 2005;14:1953–60.

    Article  CAS  PubMed  Google Scholar 

  • Regad T. Molecular and cellular pathogenesis of melanoma initiation and progression. Cell Mol Life Sci. 2013;70:4055–65.

    Article  CAS  PubMed  Google Scholar 

  • Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377:31–41.

    Article  CAS  PubMed  Google Scholar 

  • Rothwell PM, Price JF, Fowkes FG, Zanchetti A, Roncaglioni MC, Tognoni G, et al. Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet. 2012;379:1602–12.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar FH, Li Y, Wang Z, Kong D. Cellular signaling perturbation by natural products. Cell Signal. 2009;21:1541–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma NP, Dong L, Yuan C, Noon KR, Smith WL. Asymmetric acetylation of the cyclooxygenase-2 homodimer by aspirin and its effects on the oxygenation of arachidonic, eicosapentaenoic, and docosahexaenoic acids. Mol Pharmacol. 2010;77:979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinnberg T, Menzel M, Ewerth D, Sauer B, Schwarz M, Schaller M, et al. Beta-catenin signaling increases during melanoma progression and promotes tumor cell survival and chemoresistance. PLoS One. 2011;6, e23429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366:707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature. 2015;523:231–5.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava B, Shukla Y. Antitumour promoting activity of indole-3-carbinol in mouse skin carcinogenesis. Cancer Lett. 1998;134:91–5.

    Article  CAS  PubMed  Google Scholar 

  • Staub RE, Feng C, Onisko B, Bailey GS, Firestone GL, Bjeldanes LF. Fate of indole-3-carbinol in cultured human breast tumor cells. Chem Res Toxicol. 2002;15:101–9.

    Article  CAS  PubMed  Google Scholar 

  • Strickland LR, Pal HC, Elmets CA, Afaq F. Targeting drivers of melanoma with synthetic small molecules and phytochemicals. Cancer Lett. 2015;359:20–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundar SN, Kerekatte V, Equinozio CN, Doan VB, Bjeldanes LF, Firestone GL. Indole-3-carbinol selectively uncouples expression and activity of estrogen receptor subtypes in human breast cancer cells. Mol Endocrinol. 2006;20:3070–82.

    Article  CAS  PubMed  Google Scholar 

  • Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768–80.

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Yasumoto K, Takada R, Takada S, Watanabe K, Udono T, et al. Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J Biol Chem. 2000;275:14013–6.

    Article  CAS  PubMed  Google Scholar 

  • Vad NM, Yount G, Moridani MY. Biochemical mechanism of acetylsalicylic acid (aspirin) selective toxicity toward melanoma cell lines. Melanoma Res. 2008;18:386–99.

    Article  CAS  PubMed  Google Scholar 

  • Vaid M, Prasad R, Sun Q, Katiyar SK. Silymarin targets beta-catenin signaling in blocking migration/invasion of human melanoma cells. PLoS One. 2011;6, e23000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellbrock C, Rana S, Paterson H, Pickersgill H, Brummelkamp T, Marais R. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One. 2008;3, e2734.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xin B, Yokoyama Y, Shigeto T, Mizunuma H. Anti-tumor effect of non-steroidal anti-inflammatory drugs on human ovarian cancers. Pathol Oncol Res. 2007;13:365–9.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhang J, Dong WG. Indole-3-carbinol (I3C)-induced apoptosis in nasopharyngeal cancer cells through Fas/FasL and MAPK pathway. Med Oncol. 2011;28:1343–8.

    Article  CAS  PubMed  Google Scholar 

  • Yajima I, Kumasaka MY, Thang ND, Goto Y, Takeda K, Iida M, et al. Molecular network associated with MITF in skin melanoma development and progression. J Skin Cancer. 2011;2011:730170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 1998;396:77–80.

    Article  CAS  PubMed  Google Scholar 

  • You L, He B, Xu Z, Uematsu K, Mazieres J, Fujii N, et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res. 2004;64:5385–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhang YP, Wan YD, Sun YL, Li J, Zhu RT. Aspirin might reduce the incidence of pancreatic cancer: a meta-analysis of observational studies. Sci Rep. 2015;5:15460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The pGL2-333/+120-MITF-M, MITF promoter-luciferase reporter plasmid was a kind gift from Dr. Richard Marais (Cancer Research UK Centre of Cell and Molecular Biology, London, UK) (Wellbrock et al. 2008). We would like to thank Dr. Aishwarya Kundu for her outstanding advice and suggestions during the course of this work as well as Lorena Hardle for her help during the preliminary stages of the project. This study was supported by National Institutes of Health Public Service grant CA164095 awarded from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Firestone.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poindexter, K.M., Matthew, S., Aronchik, I. et al. Cooperative antiproliferative signaling by aspirin and indole-3-carbinol targets microphthalmia-associated transcription factor gene expression and promoter activity in human melanoma cells. Cell Biol Toxicol 32, 103–119 (2016). https://doi.org/10.1007/s10565-016-9321-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-016-9321-5

Keywords

Navigation