Skip to main content

Advertisement

Log in

Molecular and cellular pathogenesis of melanoma initiation and progression

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Melanoma is a malignant tumor of melanocytes that can spread to other organs of the body, resulting in severe and/or lethal malignancies. Melanocytes are pigment-producing cells found in the deep layer of the epidermis and are originated from melanocytes stem cells through a cellular process called melanogenesis. Several genes and epigenetic and micro-environmental factors are involved in this process via the regulation and maintenance of the balance between melanocytes stem cells proliferation and their differentiation into melanocytes. Dysregulation of this balance through gain or loss of function of key genes implicated in the control and regulation of cell cycle progression and/or differentiation results in melanoma initiation and progression. This review aims to provide a comprehensive overview about the origin of melanocytes, the oncogenic events involved in melanocytes stem cells transformation, and the mechanisms implicated in the perpetuation of melanoma malignant phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Erickson CA, Reedy MV (1998) Neural crest development: the interplay between morphogenesis and cell differentiation. Curr Top Dev Biol 40:177–209

    PubMed  CAS  Google Scholar 

  2. Dupin E, Glavieux C, Vaigot P, Le Douarin NM (2000) Endothelin 3 induces the reversion of melanocytes to glia through a neural crest-derived glial-melanocytic progenitor. Proc Natl Acad Sci 97(14):7882–7887

    PubMed  CAS  Google Scholar 

  3. Lahav R, Heffner G, Patterson PH (1999) An endothelin receptor B antagonist inhibits growth and induces cell death in human melanoma cells in vitro and in vivo. Proc Natl Acad Sci 96(20):11496–11500

    PubMed  CAS  Google Scholar 

  4. Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M, Pergamenschikov A, Lee JC, Lashkari D, Shalon D, Myers TG, Weinstein JN, Botstein D, Brown PO (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24(3):227–235

    PubMed  CAS  Google Scholar 

  5. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J, Lee C, Wagner SN, Li C, Golub TR, Rimm DL, Meyerson ML, Fisher DE, Sellers WR (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117–122

    PubMed  CAS  Google Scholar 

  6. Bonazzi VF, Stark MS, Hayward NK (2012) MicroRNA regulation of melanoma progression. Melanoma Res 22(2):101

    PubMed  CAS  Google Scholar 

  7. Haluska FG, Tsao H, Wu H, Haluska FS, Lazar A, Goel V (2006) Genetic alterations in signaling pathways in melanoma. Clin Cancer Res 12(7):2301s–2307s

    PubMed  CAS  Google Scholar 

  8. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008) Identification of cells initiating human melanomas. Nature 451(7176):345–349

    PubMed  CAS  Google Scholar 

  9. Linley AJ, Mathieu MG, Miles AK, Rees RC, McArdle SE, Regad T (2012) The helicase HAGE expressed by malignant melanoma-initiating cells is required for tumor cell proliferation in vivo. J Biol Chem 287(17):13633–13643

    PubMed  CAS  Google Scholar 

  10. Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S (1997) Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389(6654):966–970

    PubMed  CAS  Google Scholar 

  11. Jin EJ, Erickson CA, Takada S, Burrus LW (2001) Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo. Dev Biol 233(1):22–37

    PubMed  CAS  Google Scholar 

  12. Dorsky RI, Moon RT, Raible DW (1998) Control of neural crest cell fate by the Wnt signalling pathway. Nature 396(6709):370–373

    PubMed  CAS  Google Scholar 

  13. Dunn KJ, Williams BO, Li Y, Pavan WJ (2000) Neural crest-directed gene transfer demonstrates Wnt1 role in melanocyte expansion and differentiation during mouse development. Proc Natl Acad Sci 97(18):10050–10055

    PubMed  CAS  Google Scholar 

  14. Vance KW, Goding CR (2004) The transcription network regulating melanocyte development and melanoma. Pigment Cell Res 17(4):318–325

    PubMed  CAS  Google Scholar 

  15. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2(2):76–83

    PubMed  CAS  Google Scholar 

  16. Honoré SM, Aybar MJ, Mayor R (2003) Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Dev Biol 260(1):79–96

    PubMed  Google Scholar 

  17. Meulemans D, Bronner-Fraser M (2004) Gene-regulatory interactions in neural crest evolution and development. Dev Cell 7(3):291–299

    PubMed  CAS  Google Scholar 

  18. Geissler EN, Ryan MA, Housman DE (1988) The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell 55(1):185

    PubMed  CAS  Google Scholar 

  19. Williams DE, Eisenman J, Baird A, Rauch C, Van Ness K, March CJ, Park LS, Martin U, Mochizukl DY, Boswell SH, Burgess GS, Cosman D, Lyman SD (1990) Identification of a ligand for the c-kit proto-oncogene. Cell 63(1):167–174

    PubMed  CAS  Google Scholar 

  20. Wehrle-Haller B, Weston JA (1995) Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development 121(3):731–742

    PubMed  CAS  Google Scholar 

  21. Parichy DM, Rawls JF, Pratt SJ, Whitfield TT, Johnson SL (1999) Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. Development 126(15):3425–3436

    PubMed  CAS  Google Scholar 

  22. Erickson CA (1993) From the crest to the periphery: control of pigment cell migration and lineage segregation. Pigment Cell Res 6(5):336–347

    PubMed  CAS  Google Scholar 

  23. Nishikawa SI, Osawa M (2007) Generating quiescent stem cells. Pigment Cell Res 20(4):263–270

    PubMed  Google Scholar 

  24. Fuchs E (2007) Scratching the surface of skin development. Nature 445(7130):834–842

    PubMed  CAS  Google Scholar 

  25. Uong A, Zon LI (2010) Melanocytes in development and cancer. J Cell Physiol 222(1):38–41

    PubMed  CAS  Google Scholar 

  26. Dhomen N, Reis-Filho JS, da Rocha DS, Hayward R, Savage K, Delmas V, Larue L, Pritchard C, Marais R (2009) Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15(4):294

    PubMed  CAS  Google Scholar 

  27. Daniotti M, Oggionni M, Ranzani T, Vallacchi V, Campi V, Di Stasi D, Torre GD, Perrone F, Luoni C, Suardi S, Frattini M, Pilotti S, Anichini A, Tragni G, Parmiani G, Pierotti MA, Rodolfo M (2004) BRAF alterations are associated with complex mutational profiles in malignant melanoma. Oncogene 23(35):5968–5977

    PubMed  CAS  Google Scholar 

  28. Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9(2):180–186

    PubMed  CAS  Google Scholar 

  29. Garnett MJ, Marais R (2004) Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6(4):313–319

    PubMed  CAS  Google Scholar 

  30. Thomas NE (2006) BRAF somatic mutations in malignant melanoma and melanocytic naevi. Melanoma Res 16(2):97

    PubMed  CAS  Google Scholar 

  31. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS, Malek S (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464(7287):431–435

    PubMed  CAS  Google Scholar 

  32. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464(7287):427–430

    PubMed  CAS  Google Scholar 

  33. Stark MS, Woods SL, Gartside MG, Bonazzi VF, Dutton-Regester K, Aoude LG, Chow D, Sereduk C, Niemi NM, Tang N, Ellis JJ, Reid J, Zismann V, Tyagi S, Muzny D, Newsham I, Wu Y, Palmer JM, Pollak T, Youngkin D, Brooks BR, Lanagan C, Schmidt CW, Kobe B, MacKeigan JP, Yin H, Brown KM, Gibbs R, Trent J, Hayward NK (2011) Frequent somatic mutations in MAP3K5 and MAP3K9 in metastatic melanoma identified by exome sequencing. Nat Genet 44(2):165–169

    PubMed  Google Scholar 

  34. Nikolaev SI, Rimoldi D, Iseli C, Valsesia A, Robyr D, Gehrig C, Harshman K, Guipponi M, Bukach O, Zoete V, Michielin O, Muehlethaler K, Speiser D, Beckmann JS, Xenarios I, Halazonetis TD, Jongeneel CV, Stevenson BJ, Antonarakis SE (2011) Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet 44(2):133–139. doi:10.1038/ng.1026

    Google Scholar 

  35. Kwong LN, Costello JC, Liu H, Jiang S, Helms TL, Langsdorf AE, Jakubosky D, Genovese G, Muller FL, Jeong JH, Bender RP, Chu GC, Flaherty KT, Wargo JA, Collins JJ, Chin L (2012) Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med 18(10):1503–1510. doi:10.1038/nm.2941

    Google Scholar 

  36. Houben R, Hesbacher S, Schmid CP, Kauczok CS, Flohr U, Haferkamp S, Müller CS, Schrama D, Wischhusen J, Becker JC (2011) High-level expression of wild-type p53 in melanoma cells is frequently associated with inactivity in p53 reporter gene assays. PLoS One 6(7):e22096

    PubMed  CAS  Google Scholar 

  37. Leibeling D, Laspe P, Emmert S (2006) Nucleotide excision repair and cancer. J Mol Histol 37(5):225–238

    PubMed  CAS  Google Scholar 

  38. De Boer J, Hoeijmakers JH (2000) Nucleotide excision repair and human syndromes. Carcinogenesis 21(3):453–460

    PubMed  Google Scholar 

  39. Daya-Grosjean L, Sarasin A (2005) The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skintumors. Mut Res Fundam Mol Mech Mutagen 571(1-2):43–56

    CAS  Google Scholar 

  40. Völler D, Ott C, Bosserhoff A (2013) MicroRNAs in malignant melanoma. Clinic Biochem. doi:10.1016/j.clinbiochem.2013.01.008

  41. Mueller DW, Bosserhoff AK (2009) Role of miRNAs in the progression of malignant melanoma. Br J Cancer 101(4):551–556

    PubMed  CAS  Google Scholar 

  42. Felicetti F, Errico MC, Segnalini P, Mattia G, Carè A (2008) MicroRNA-221 and-222 pathway controls melanoma progression. Expert Rev Anticancer Ther 8(11):1759–1765

    PubMed  CAS  Google Scholar 

  43. Penna E, Orso F, Cimino D, Tenaglia E, Lembo A, Quaglino E, Poliseno L, Haimovic A, Osella-Abate S, De Pittà C, Pinatel E, Stadler MB, Provero P, Bernengo MG, Osman I, Taverna D (2011) microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J 30(10):1990–2007

    PubMed  CAS  Google Scholar 

  44. Boyle GM, Woods SL, Bonazzi VF, Stark MS, Hacker E, Aoude LG, Dutton-Regester K, Cook AL, Sturm RA, Hayward NK (2011) Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res 24(3):525–537

    PubMed  CAS  Google Scholar 

  45. Levy C, Khaled M, Iliopoulos D, Janas MM, Schubert S, Pinner S, Chen PH, Li S, Fletcher AL, Yokoyama S, Scott KL, Garraway LA, Song JS, Granter SR, Turley SJ, Fisher DE, Novina CD (2010) Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol Cell 40(5):841–849

    PubMed  CAS  Google Scholar 

  46. Müller DW, Bosserhoff AK (2008) Integrin β3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene 27(52):6698–6706

    PubMed  Google Scholar 

  47. Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M (2008) MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 18(5):549–557

    PubMed  CAS  Google Scholar 

  48. Chen J, Feilotter HE, Paré GC, Zhang X, Pemberton JG, Garady C, Lai D, Yang X, Tron VA (2010) MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J pathol 176(5):2520–2529

    PubMed  CAS  Google Scholar 

  49. Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, Kashani-Sabet M (2011) miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem 286(19):16606–16614

    PubMed  CAS  Google Scholar 

  50. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61(7):1329–1337

    PubMed  CAS  Google Scholar 

  51. Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa SI (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416(6883):854–860

    PubMed  CAS  Google Scholar 

  52. Nishimura EK, Granter SR, Fisher DE (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307(5710):720–724

    PubMed  CAS  Google Scholar 

  53. Steingrímsson E, Copeland NG, Jenkins NA (2005) Melanocyte stem cell maintenance and hair graying. Cell 121(1):9–12

    PubMed  Google Scholar 

  54. Sarin KY, Artandi SE (2007) Aging, graying, and loss of melanocyte stem cells. Stem Cell Rev 3(3):212–217

    PubMed  CAS  Google Scholar 

  55. Moriyama M, Osawa M, Mak SS, Ohtsuka T, Yamamoto N, Han H, Delmas V, Kageyama R, Beermann F, Larue L, Nishikawa SI (2006) Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J Cell Biol 173(3):333–339

    PubMed  CAS  Google Scholar 

  56. Cheli Y, Guiliano S, Botton T, Rocchi S, Hofman V, Hofman P, Hofman V, Hofman P, Bahadoran P, Bertolotto C, Ballotti R (2011) Mitf is the key molecular switch between mouse or human melanoma-initiating cells and their differentiated progeny. Oncogene 30(20):2307–2318

    PubMed  CAS  Google Scholar 

  57. Lang D, Lu MM, Huang L, Engleka KA, Zhang M, Chu EY, Lipner S, Skoultchi A, Millar SE, Epstein JA (2005) Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433(7028):884–887

    PubMed  CAS  Google Scholar 

  58. Schepsky A, Bruser K, Gunnarsson GJ, Goodall J, Hallsson JH, Goding CR, Steingrimsson E, Hecht A (2006) The microphthalmia-associated transcription factor Mitf interacts with β-catenin to determine target gene expression. Mol Cell Biol 26(23):8914–8927

    PubMed  CAS  Google Scholar 

  59. Takeda K, Yasumoto KI, Takada R, Takada S, Watanabe KI, Udono T, Saito H, Takahashi K, Shibahara S (2000) Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J Biol Chem 275(19):14013–14016

    PubMed  CAS  Google Scholar 

  60. Mak SS, Moriyama M, Nishioka E, Osawa M, Nishikawa SI (2006) Indispensable role of Bcl2 in the development of the melanocyte stem cell. Dev Biol 291(1):144–153

    PubMed  CAS  Google Scholar 

  61. Vance KW, Goding CR (2004) The transcription network regulating melanocyte development and melanoma. Pigment Cell Res 17(4):318–325

    PubMed  CAS  Google Scholar 

  62. Hoek KS, Goding CR (2010) Cancer stem cells versus phenotype-switching in melanoma. Pigment cell Melanoma Res 23(6):746–759

    PubMed  CAS  Google Scholar 

  63. Haass NK, Smalley KS, Li L, Herlyn M (2005) Adhesion, migration, and communication in melanocytes and melanoma. Pigment Cell Res 18(3):150–159

    PubMed  CAS  Google Scholar 

  64. Lee JT, Herlyn M (2006) Microenvironmental influences in melanoma progression. J Cell Biochem 101(4):862–872

    Google Scholar 

  65. Hsu MY, Meier F, Herlyn M (2002) Melanoma development and progression: a conspiracy between tumor and host. Differentiation 70(9–10):522–536

    PubMed  CAS  Google Scholar 

  66. Gupta PB, Kuperwasser C, Brunet JP, Ramaswamy S, Kuo WL, Gray JW, Naber SP, Weinberg RA (2005) The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet 37(10):1047–1054

    PubMed  CAS  Google Scholar 

  67. van Kempen LC, Ruiter DJ, van Muijen GN, Coussens LM (2003) The tumor microenvironment: a critical determinant of neoplastic evolution. Eur J Cell Biol 82(11):539–548

    PubMed  Google Scholar 

  68. Norrby K (2002) Mast cells and angiogenesis. Apmis 110(5):355–371

    PubMed  CAS  Google Scholar 

  69. Yong LCJ (1997) The mast cell: origin, morphology, distribution, and function. Exp Toxicol Pathol 49(6):409–424

    PubMed  CAS  Google Scholar 

  70. Fang KC, Raymond WW, Blount JL, Caughey GH (1997) Dog mast cell α-chymase activates progelatinase B by cleaving the Phe88-Gln89 and Phe91-Glu92 bonds of the catalytic domain. J Biol Chem 272(41):25628–25635

    PubMed  CAS  Google Scholar 

  71. Braeuer RR, Zigler M, Villares GJ, Dobroff AS, Bar-Eli M (2011) Transcriptional control of melanoma metastasis: the importance of the tumor microenvironment. Semin Cancer Biol 21(2):83–88

    PubMed  CAS  Google Scholar 

  72. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    PubMed  CAS  Google Scholar 

  73. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328–9337

    PubMed  CAS  Google Scholar 

  74. Lin K, Baritaki S, Militello L, Malaponte G, Bevelacqua Y, Bonavida B (2010) The role of B-RAF mutations in melanoma and the induction of EMT via dysregulation of the NF-κB/Snail/RKIP/PTEN circuit. Genes Cancer 1(5):409–420

    PubMed  CAS  Google Scholar 

  75. Weiss MB, Abel EV, Mayberry MM, Basile KJ, Berger AC, Aplin AE (2012) TWIST1 Is an ERK1/2 effector that promotes invasion and regulates MMP-1 expression in human melanoma cells. Cancer Res 72(24):6382–6392

    PubMed  CAS  Google Scholar 

  76. Gupta PB, Kuperwasser C, Brunet JP, Ramaswamy S, Kuo WL, Gray JW, Naber SP, Weinberg RA (2005) The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet 37(10):1047–1054

    PubMed  CAS  Google Scholar 

  77. Fenouille N, Tichet M, Dufies M, Pottier A, Mogha A, Soo JK, Rocchi S, Tartare-Deckert S (2012) The epithelial-mesenchymal transition (EMT) regulatory factor SLUG (SNAI2) is a downstream target of SPARC and AKT in promoting melanoma cell invasion. PLoS One 7(7):e40378

    PubMed  CAS  Google Scholar 

  78. Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, Sayegh MH, Sadee W, Frank MH (2005) ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 65(10):4320–4333

    PubMed  CAS  Google Scholar 

  79. Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, Gritti A, Piccinini A, Porro D, Santinami M, Invernici G, Parati E, Alessandri G, La Porta CA (2007) Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43(5):935–946

    PubMed  CAS  Google Scholar 

  80. Topczewska JM, Postovit LM, Margaryan NV, Sam A, Hess AR, Wheaton WW, Nickoloff BJ, Topczewski J, Hendrix MJ (2006) Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 12(8):925–932

    PubMed  CAS  Google Scholar 

  81. Grichnik JM, Ali WN, Burch JA, Byers JD, Garcia CA, Clark RE, Shea CR (1996) KIT expression reveals a population of precursor melanocytes in human skin. J Invest Dermatol 106(5):967–971

    PubMed  CAS  Google Scholar 

  82. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2(1):48–58

    PubMed  CAS  Google Scholar 

  83. Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5(8):615–625

    PubMed  CAS  Google Scholar 

  84. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328–9337

    PubMed  CAS  Google Scholar 

  85. Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, Gritti A, Piccinini A, Porro D, Santinami M, Invernici G, Parati E, Alessandri G, La Porta CA (2007) Melanoma contains CD133- and ABCG2-positive cells with enhanced tumourigenic potential. Eur J Cancer 43(5):935–946

    PubMed  CAS  Google Scholar 

  86. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, St Clair R, Baljevic M, White I, Jin DK, Chadburn A, Murphy AJ, Valenzuela DM, Gale NW, Thurston G, Yancopoulos GD, D’Angelica M, Kemeny N, Lyden D, Rafii S (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. J Clin Invest 118(6):2111

    PubMed  CAS  Google Scholar 

  87. La Porta C (2009) Cancer stem cells: lessons from melanoma. Stem Cell Rev 5(1):61–65

    PubMed  Google Scholar 

  88. Akers SN, Odunsi K, Karpf AR (2010) Regulation of cancer germline antigen gene expression: implications for cancer immunotherapy. Future Oncol 6(5):717–770

    PubMed  CAS  Google Scholar 

  89. Martelange V, De Smet C, De Plaen E, Lurquin C, Boon T (2000) Identification on a human sarcoma of two new genes with tumor-specific expression. Cancer Res 60:3848–3855

    PubMed  CAS  Google Scholar 

  90. Caruthers JM, McKay DB (2002) Helicase structure and mechanism. Curr Opin Struct Biol 12:123–133

    PubMed  CAS  Google Scholar 

  91. Silverman E, Edwalds-Gilbert G, Lin RJ (2003) DExD/H-box proteins and their partners: helping RNA helicases unwind. Gene 312:1–16

    PubMed  CAS  Google Scholar 

  92. Fuller-Pace FV (2006) DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res 34:4206–4215

    PubMed  CAS  Google Scholar 

  93. Cordin O, Banroques J, Tanner NK, Linder P (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37

    PubMed  CAS  Google Scholar 

  94. Linder P (2006) Dead-box proteins. Family affair—active and passive players in RNP-remodeling. Nucleic Acids Res 34:4168–4180

    PubMed  CAS  Google Scholar 

  95. Linder P, Jankowsky E (2011) From unwinding to clamping—the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12:505–516

    PubMed  CAS  Google Scholar 

  96. Camats M, Guil S, Kokolo M, Bach-Elias M (2008) p68 RNA helicase (DDX5) alters activity of cis- and trans-acting factors of the alternative splicing of H-Ras. PLoS One 3:2926

    Google Scholar 

  97. Causevic M, Hislop RG, Kernohan NM, Carey FA, Kay RA, Steele RJ, Fuller-Pace FV (2001) Overexpression and poly-ubiquitylation of the DEAD-box RNA helicase p68 in colorectal tumours. Oncogene 20:7734–7743

    PubMed  CAS  Google Scholar 

  98. Shim H, Shim E, Lee H, Hahn J, Kang D, Lee YS, Jeoung D (2006) CAGE, a novel cancer/testis antigen gene, promotes cell motility by activation ERK and p38 MAPK and downregulating ROS. Mol Cells 21(3):367

    PubMed  CAS  Google Scholar 

  99. Clark EL, Coulson A, Dalgliesh C, Rajan P, Nicol SM, Fleming S, Heer R, Gaughan L, Leung HY, Elliott DJ, Fuller-Pace FV, Robson CN (2008) The RNA helicase p68 is a novel androgen receptor co-activator involved in splicing and is overexpressed in prostate cancer. Cancer Res 6:7938–7946

    Google Scholar 

  100. Kim Y, Park H, Park D, Lee YS, Choe J, Hahn JH, Lee H, Kim YM, Jeoung D (2010) Cancer/testis antigen CAGE exerts negative regulation on p53 expression through HDAC2 and confers resistance to anti-cancer drugs. J Biol Chem 285:25957–25968

    PubMed  CAS  Google Scholar 

  101. Fuller-Pace FV, Moore HC (2011) RNA helicases p68 and p72: multifunctional proteins with important implications for cancer development. Future Oncol 7:239–251

    PubMed  CAS  Google Scholar 

  102. Por E, Byun HJ, Lee EJ, Lim JH, Jung SY, Park I, Kim YM, Jeoung DI, Lee H (2010) The cancer/testis antigen CAGE with oncogenic potential stimulates cell proliferation by up-regulating cyclins D1 and E in an AP-1- and E2F-dependent manner. J Biol Chem 285:14475–14485

    PubMed  CAS  Google Scholar 

  103. Kim Y, Jeoung D (2008) Role of CAGE, a novel cancer/testis antigen, in various cellular processes, including tumorigenesis, cytolytic T lymphocyte induction, and cell motility. J Microbiol Biotechnol 18:600–610

    PubMed  CAS  Google Scholar 

  104. Liggins AP, Lim SH, Soilleux EJ, Pulford K, Banham AH (2010) A panel of cancer-testis genes exhibiting broad-spectrum expression in haematological malignancies. Cancer Immun 10:8

    PubMed  Google Scholar 

  105. Mathieu MG, Linley AJ, Reeder SP, Badoual C, Tartour E, Rees RC, McArdle SE (2010) HAGE, a cancer/testis antigen expressed at the protein level in a variety of cancers. Cancer Immun 10:2

    PubMed  Google Scholar 

  106. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    PubMed  CAS  Google Scholar 

  107. Shields JM, Pruitt K, McFall A, Shaub A, Der CJ (2000) Understanding Ras: “it ain’t over’til it’s over”. Trends Cell Biol 10:147–154

    PubMed  CAS  Google Scholar 

  108. Castellano E, Downward J (2010) Role of RAS in the regulation of PI3-kinase. Curr Top Microbiol Immunol 346:143–169

    PubMed  CAS  Google Scholar 

  109. Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, San Jose-Eneriz E, Garate L, Cordeu L, Cervantes F, Prosper F, Heiniger A, Torres A (2007) Epigenetic regulation of human cancer/testis antigen gene, HAGE, in chronic myeloid leukemia. Haematologica 92(2):153–162

    PubMed  CAS  Google Scholar 

  110. Chen Q, Lin J, Yao DM, Qian J, Qian W, Yang J, Chai HY, Ma JC, Deng ZQ, Wang CZ, Li Y (2012) Aberrant hypomethylation of DDX43 promoter in myelodysplastic syndrome. Br J Haematol 158(2):293–296. doi:10.1111/j.1365-2141.2012.09138.x

    Google Scholar 

  111. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    PubMed  CAS  Google Scholar 

  112. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N, Kudchadkar R, Burris HA 3rd, Falchook G, Algazi A, Lewis K, Long GV, Puzanov I, Lebowitz P, Singh A, Little S, Sun P, Allred A, Ouellet D, Kim KB, Patel K, Weber J (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367(18):1694–1703. doi:10.1056/NEJMoa1210093

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Regad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regad, T. Molecular and cellular pathogenesis of melanoma initiation and progression. Cell. Mol. Life Sci. 70, 4055–4065 (2013). https://doi.org/10.1007/s00018-013-1324-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1324-2

Keywords

Navigation