Skip to main content
Log in

Transcriptome profiling in crustaceans as a tool for ecotoxicogenomics

Daphnia magna DNA microarray

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Chemicals released into the environment have the potential to affect various species and it is important to evaluate such chemical effect on ecosystems, including aquatic organisms. Among aquatic organisms, Daphnia magna has been used extensively for acute toxicity or reproductive toxicity tests. Although these types of tests can provide information on hazardous concentrations of chemicals, they provide no information on their mode of action. Recent advances in toxicogenomics, the integration of genomics with toxicology, have the potential to afford a better understanding of the responses of aquatic organisms to pollutants. In a previous study, we developed an oligonucleotide-based DNA microarray with high reproducibility using a Daphnia expressed sequence tag (EST) database. In this study, we increased the number of genes on the array and used it for a careful ecotoxicogenomic assessment of Daphnia magna. The DNA microarray was used to evaluate gene expression profiles of neonate daphnids exposed to beta-naphthoflavone (bNF). Exposure to this chemical resulted in a characteristic gene expression pattern. As the number of the genes on an array was increased, the number of genes that were found to respond to the chemicals was also increased, which made the classification of the toxic chemicals easier and more accurate. This newly developed DNA microarray can be useful for a obtaining a better mechanistic understanding of chemical toxicity effects on a common freshwater organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AhR:

aryl hydrocarbon receptor

References

  • Butler RA, Kelley ML, Powell WH, Hahn ME, Van Beneden RJ. An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and beta-naphthoflavone binding. Gene. 2001;278:223–34.

    Article  PubMed  CAS  Google Scholar 

  • EPA. AQUIRE (Aquatic Toxicity Information Retrieval Database), National Health and Environmental Effects Research Laboratory, Duluth, MN. 2002

  • Iguchi T, Watanabe H, Katsu Y. Application of ecotoxicogenomics for studying endocrine disruption in vertebrates and invertebrates. Environ Health Perspect. 2006;114(Suppl 1):101–5.

    PubMed  Google Scholar 

  • Oda S, Tatarazako N, Watanabe H, Morita M, Iguchi T. Production of male neonates in four cladoceran species exposed to a juvenile hormone analog, fenoxycarb. Chemosphere. 2005;60:74–8.

    Article  PubMed  CAS  Google Scholar 

  • OECD. Test Guideline 202. Daphnia sp. Acute Immobilisation Test. 1981;

  • OECD. Test Guideline 205. Avian Dietary Toxicity Test. 1984;

  • OECD. Test Guideline 203. Fish, Acute Toxicity Test. 1992

  • OECD. Test Guideline 211. Daphnia magna Reproduction Test. 1998

  • OECD. Test No. 201: Alga, Growth Inhibition Test. 2006

  • Olmstead AW, LeBlanc GA. Temporal and quantitative changes in sexual reproductive cycling of the cladoceran Daphnia magna by a juvenile hormone analog. J Exp Zool. 2001a;290:148–55.

    Article  PubMed  CAS  Google Scholar 

  • Olmstead AW, LeBlanc GL. Low exposure concentration effects of methoprene on endocrine-regulated processes in the crustacean Daphnia magna. Toxicol Sci. 2001b;62:268–73.

    Article  PubMed  CAS  Google Scholar 

  • Powell-Coffman JA, Bradfield CA, Wood WB. Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc Natl Acad Sci U S A. 1998;95:2844–9.

    Article  PubMed  CAS  Google Scholar 

  • Poynton HC, Varshavsky JR, Chang B, Cavigiolio G, Chan S, Holman PS, Loguinov AV, Bauer DJ, Komachi K, Theil EC, Perkins EJ, Hughes O, Vulpe CD. Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ Sci Technol. 2007;41:1044–50.

    Article  PubMed  CAS  Google Scholar 

  • Snape JR, Maund SJ, Pickford DB, Hutchinson TH. Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat Toxicol. 2004;67:143–54.

    Article  PubMed  CAS  Google Scholar 

  • Soetaert A, Moens LN, Van der Ven K, Van Leemput K, Naudts B, Blust R, De Coen WM. Molecular impact of propiconazole on Daphnia magna using a reproduction-related cDNA array. Comp Biochem Physiol C Toxicol Pharmacol. 2006;142:66–76.

    Article  PubMed  Google Scholar 

  • Soetaert A, van der Ven K, Moens LN, Vandenbrouck T, van Remortel P, De Coen WM. Daphnia magna and ecotoxicogenomics: gene expression profiles of the anti-ecdysteroidal fungicide fenarimol using energy-, molting- and life stage-related cDNA libraries. Chemosphere. 2007a;67:60–71.

    Article  PubMed  CAS  Google Scholar 

  • Soetaert A, Vandenbrouck T, van der Ven K, Maras M, van Remortel P, Blust R, De Coen WM. Molecular responses during cadmium-induced stress in Daphnia magna: integration of differential gene expression with higher-level effects. Aquat Toxicol. 2007b;83:212–22.

    Article  PubMed  CAS  Google Scholar 

  • Tatarazako N, Oda S, Watanabe H, Morita M, Iguchi T. Juvenile hormone agonists affect the occurrence of male Daphnia. Chemosphere. 2003;53:827–33.

    Article  PubMed  CAS  Google Scholar 

  • von der Ohe PC, Kuhne R, Ebert RU, Altenburger R, Liess M, Schuurmann G. Structural alerts—a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay. Chem Res Toxicol. 2005;18:536–55.

    Article  Google Scholar 

  • Watanabe H, Iguchi T. Using ecotoxicogenomics to evaluate the impact of chemicals on aquatic organisms. Marin Biology. 2006;149:107–15.

    Article  CAS  Google Scholar 

  • Watanabe H, Tatarazako N, Oda S, Nishide H, Uchiyama I, Morita M, Iguchi T. Analysis of expressed sequence tags of the water flea Daphnia magna. Genome. 2005;48:606–9.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Takahashi E, Nakamura Y, Oda S, Tatarazako N, Iguchi T. Development of a Daphnia magna DNA microarray for evaluating the toxicity of environmental chemicals. Environ Toxicol Chem. 2007;26:669–76.

    Article  PubMed  CAS  Google Scholar 

  • Waters MD, Fostel JM. Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet. 2004;5:936–48.

    Article  PubMed  CAS  Google Scholar 

  • Waters M, Boorman G, Bushel P, Cunningham M, Irwin R, Merrick A, Olden K, Paules R, Selkirk J, Stasiewicz S, Weis B, Van Houten B, Walker N, Tennant R. Systems toxicology and the Chemical Effects in Biological Systems (CEBS) knowledge base. EHP Toxicogenomics 2003;111:15–28(811–24).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, from the Ministry of the Environment of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, H., Kobayashi, K., Kato, Y. et al. Transcriptome profiling in crustaceans as a tool for ecotoxicogenomics. Cell Biol Toxicol 24, 641–647 (2008). https://doi.org/10.1007/s10565-008-9108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-008-9108-4

Keywords

Navigation