Skip to main content

Advertisement

Log in

Sea urchin coelomocytes as a novel cellular biosensor of environmental stress: a field study in the Tremiti Island Marine Protected Area, Southern Adriatic Sea, Italy

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate on the suitability of the sea urchin as a sentinel organism for the assessment of the macro-zoobenthos health state in bio-monitoring programmes. A field study was carried out during two oceanographic campaigns using immuno-competent cells, the coelomocytes, from sea urchins living in a marine protected area. In particular, coelomocytes subpopulations ratio and heat shock protein 70 (HSC70) levels were measured in specimens of Paracentrotus lividus (Lamark, 1816) collected in two sampling sites, namely Pianosa and Caprara Islands, both belonging to the Tremiti Island Marine Protected Area (MPA) in the Southern Adriatic Sea, Italy. By density gradients separation performed on board the Astrea boat, we found an evident increase in red amoebocytes, a subpopulation increasing upon stress, in those specimens collected around Pianosa (strictly protected area with no human activities allowed), unlike those collected around Caprara (low restrictions for human activities). Likewise, we found higher HSC70 protein levels in the low impacted site (Pianosa) by Western blots on total coelomocyte lysates. The apparent paradox could be explained by the presence in the Pianosa sampling area of contaminating remains from Second World War conventional ammunitions and a merchant boat wreck. Metal determination performed using sea urchin gonads by inductively coupled plasma atomic emission spectrometry (ICP-AES) revealed higher Fe and lower Zn levels around Pianosa with respect to Caprara, in accordance with the persistent contaminating metal sources, and thus calling for remediation measures. Taken all together, our results confirm the feasibility of using sea urchin coelomocytes as biosensors of environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCM:

Coelomocyte culture medium

DTT:

Dithiothreitol

EDTA:

ethylenediamine-tetraacetic acid

EGTA:

ethyleneglycol-tetraacetic acid

HSC70:

Heat shock protein 70 constitutively expressed

ICP-AES:

Inductively coupled plasma atomic emission spectrometry

MPA:

Marine Protected Area

REDCOD:

Research on Environmental Damage Caused By Chemical Ordinance Dumped At Sea

TNT:

2,4,6-trinitrotoluene

References

  • Agell G, Turon X, De Caralt S, López-Legentil S, Uriz MJ. Molecular and organism biomarkers of copper pollution in the ascidian Pseudodistoma crucigaster. Mar Pollut Bull 2004;48:759–67.

    Article  PubMed  CAS  Google Scholar 

  • Amato E, Alcaro L, Corsi I, Della Torre C, Farchi C, Focardi S, et al. An integrated ecotoxicological approach to assess the effects of pollutants released by unexploded chemical ordnance dumped in the southern Adriatic (Mediterranean Sea). Mar Biol 2006;149:17–23.

    Article  CAS  Google Scholar 

  • American Society for Testing and Materials. Standard guide for conducting static acute toxicity tests with echinoid embryos. Annu. Book ASTM Stand 2004;11(06):E1563–E1598.

    Google Scholar 

  • Becker J, Craig EA. Heat-shock proteins as molecular chaperones. Eur J Biochem 1994;219:11–23.

    Article  PubMed  CAS  Google Scholar 

  • Beiras R, Bellas J, Fernandez N, Lorenzo JI, Cobelo-Garciam A. Assessment of coastal marine pollution in Galicia (NW Iberian Peninsula); metal concentrations in sea water, sediments and mussels (Mytilus galloprovincialis) versus embryo-larval bioassays using Paracentrotus lividus and Ciona intestinal. Mar Environ Res 2003;56:531–53.

    Article  PubMed  CAS  Google Scholar 

  • Belden JB, Ownby DR, Lotufo GR, Lydy MJ. Accumulation of trinitrotoluene (TNT) in aquatic organisms: part 2-Bioconcentration in aquatic invertebrates and potential for trophic transfer to channel catfish (Ictalurus punctatus). Chemosphere 2005;58:1161–8.

    Article  PubMed  CAS  Google Scholar 

  • Bonaventura R, Poma V, Costa C, Matranga V. UVB radiation prevents skeleton growth and stimulates the expression of stress markers in sea urchin embryos. Biochem Biophys Res Commun 2005;328:150–7.

    Article  PubMed  CAS  Google Scholar 

  • Buchner J. Supervising the fold: functional principles of molecular chaperones. FASEB J 1996;10:9–10.

    Google Scholar 

  • Candia Carnevali MD. Regeneration in Echinoderms: repair, regrowth, cloning. ISJ Inf Syst J 2006;3:64–76.

    Google Scholar 

  • Carnevali O, Maradonna F. Exposure to xenobiotic compounds: looking for new biomarkers (minireview). Gen Comp Endocr 2003;131:203–9.

    Article  PubMed  CAS  Google Scholar 

  • Conder JM, La Point TW, Bowen AT. Preliminary kinetics and metabolism of 2,4,6-trinitrotoluene and its reduced metabolites in an aquatic oligochaete. Aquat Toxicol 2004;69:199–213.

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Rodriguez LA, Chu Fu-Lin E. Heat-shock protein (HSP70) response in the eastern oyster, Crassostrea virginica, exposed to PAHs sorbed to suspended artificial clay particles and to suspended field contaminated sediments. Aquat Toxicol 2002;60:157–68.

    Article  PubMed  CAS  Google Scholar 

  • Das AK. Trace metal status in marine biological samples: a review. Int J Environ Pollut 2000;13:208–25.

    Article  CAS  Google Scholar 

  • Davenport R, Johnson LR, Schaeffer DJ, Balbach H. Phototoxicology. 1. Light enhanced toxicity of TNT and some related compounds to Daphnia magna and Lytechinus variagatus embryos. Ecotox Environ Safe 1994;27:14–22.

    Article  CAS  Google Scholar 

  • Deane EE, Woo NYS. Impact of heavy metals and organochlorines on hsp70 and hsc70 gene expression in black sea bream fibroblasts. Aquat Toxicol 2006;79:9–15.

    Article  PubMed  CAS  Google Scholar 

  • Donnini F, Dinelli E, Sangiorgi F, Fabbri E. A biological and geochemical integrated approach to assess the environmental quality of a coastal lagoon (Ravenna, Italy). Environ Int 2007;33:919–28.

    Article  PubMed  CAS  Google Scholar 

  • Downs CA, Dillon Jr RT, Fauth JE, Woodley CM. A molecular biomarker system for assessing the health of gastropods (Ilyanassa obsoleta) exposed to natural and anthropogenic stressors. J Exp Mar Biol Ecol 2001;259:189–214.

    Article  PubMed  CAS  Google Scholar 

  • Ebert TA, Southon JR. Red sea urchins (Strongylocentrotus franciscanus) can live over 100 years: confirmation with A-bomb14carbon. Fish Bull 2003;101:915–22.

    Google Scholar 

  • Ek H, Dave G, Nilsson E, Sturve J, Birgersson G. Fate and effects of 2,4,6-trinitrotoluene (TNT) from dumped ammunition in a field study with fish and invertebrates. Arch Environ Con Tox 2006;51:244–52.

    Article  CAS  Google Scholar 

  • Ek H, Dave G, Sturve J, Almroth BC, Stephensen E, Förlin L and Birgersson G. Tentative biomarkers for 2,4,6-trinitrotoluene (TNT) in fish (Oncorhynchus mykiss). Aquat Toxicol 2005;72:221–230.

    Article  PubMed  CAS  Google Scholar 

  • El-Moselhy KM, Gabal MN. Trace metals in water, sediments and marine organisms from the northern part of the Gulf of Suez, Red Sea. J Marine Syst 2004;46:39–46.

    Article  Google Scholar 

  • Franzelletti S, Fabbri E. Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors. Biochem Biophys Res Commun 2005;336:1157–63.

    Article  Google Scholar 

  • Fulladosa E, Deane E, Ng AHY, Woo NYS, Murat JC, Villaescusa I. Stress proteins induced by exposure to sublethal levels of heavy metals in sea bream (Sparus sarba) blood cells. Toxicol In Vitro 2006;20:96–100.

    Article  PubMed  CAS  Google Scholar 

  • Gellein K, Flaten TP, Erikson KM, Aschner M, Syversen T. Leaching of trace elements from biological tissue by formalin fixation. Biol Trace Element Res 2007 Oct 19 [Epub ahead of print] in press.

  • Geraci F, Pinsino A, Turturici G, Savona R, Giudice G, Sconzo G. Nickel, lead, and cadmium induce differential cellular responses in sea urchin embryos by activating the synthesis of different HSP70s. Biochem Biophys Res Commun 2004;322:873–7.

    Article  PubMed  CAS  Google Scholar 

  • Giaccio M, Salese D, Toni G. Il contenuto in oligoelementi (Cu, Zn, Cd, Hg, Pb) della fauna marina costiera di un’isola disabitata (Caprara, Arcipelago delle Tremiti). Riv Merceol 1984;23:135–41.

    CAS  Google Scholar 

  • Giaccio M, Cighelli A, Di Giacomo F. Il contenuto in oligoelementi della fauna marina costiera di un’isola disabitata (Pianosa, Arcipelago delle Tremiti). Riv Merceol 1987;26:3–11.

    CAS  Google Scholar 

  • Gorbi S, Virno Lamberti C, Notti A, Benedetti M, Fattorini D, Moltedo G, et al. An ecotoxicological protocol with caged mussels, Mytilus galloprovincialis, for monitoring the impact of an offshore platform in the Adriatic sea. Mar Environ Res 2008;65:34–49.

    Google Scholar 

  • Hallare AV, Köhler HR, Triebskorn R. Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere 2004;56:659–66.

    Article  PubMed  CAS  Google Scholar 

  • Hambidge KM, Casey CE, Krebs NF. Zinc. In: Mertz W, editor. Trace elements in human and animal nutrition. vol Vol. 2. 5th ed. Orlando, FL: Academic; 1986.

    Google Scholar 

  • Hamer B, Pavičić Hamera D, Muller WEG, Batel R. Stress-70 proteins in marine mussel Mytilus galloprovincialis as biomarkers of environmental pollution: a field study. Environ Int 2004;30:873–82.

    Article  PubMed  CAS  Google Scholar 

  • Henson JH, Nesbitt D, Wright BD, Scholey JS. Immunolocalisation of kinesin in sea urchin coelomocytes: association of kinesis with intracellular organelles. J Cell Sci 1992;103:309–20.

    PubMed  CAS  Google Scholar 

  • Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 2006;300:349–65.

    Article  PubMed  CAS  Google Scholar 

  • Ho EM, Chang HW, Kim SI, Kahng HY, Oh KH. Analysis of TNT (2,4,6-Trinitrotoluene)-inducible cellular responses and stress shock proteome in stenotrophomonas sp. OK-5. Curr Microbiol 2004;49:346–52.

    Article  PubMed  CAS  Google Scholar 

  • Ilander A, Väisänen A. An ultrasound-assisted digestion method for the determination of toxic element concentrations in ash samples by inductively coupled plasma optical emission spectrometry. Anal Chim Acta 2007;602:195–201.

    Article  PubMed  CAS  Google Scholar 

  • Islam MdS, Tanaka M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 2004;48:624–49.

    Article  Google Scholar 

  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–5.

    Article  PubMed  CAS  Google Scholar 

  • Manfra L, Moltedo G, Virno Lamberti C, Maggi C, Finoia MG, Giuliani S, et al. Metal content and toxicity of Produced Formation Water (PFW): study of the possible effects of the discharge on marine environment. Arch Environ Contam Toxicol 2007;53:183–90.

    Article  PubMed  CAS  Google Scholar 

  • Matranga V. Molecular aspects of immune reactions in Echinodermata. In: Müller WEG, Rinkevich B, editors. Invertebrate immunology. Prog Mol Subcell Biol Series. Berlin Heidelberg New York: Springer; 1996. p. 235–47.

    Google Scholar 

  • Matranga V, Bonaventura R. Sea urchin coelomocytes, the progenitors of vertebrate immune effectors, as bio-indicators of stress and pollution. In: Yokota Y, Matranga V, Smolenicka Z, editors. The sea urchin: from basic biology to aquaculture. Lisse, The Netherlands: Swets and Zeitlinger; 2002. p. 161–76.

    Google Scholar 

  • Matranga V, Toia G, Bonaventura R, Müller WEG. Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaperones 2000;5:158–65.

    Article  Google Scholar 

  • Matranga V, Bonaventura R, Di Bella G. hsp70 as a stress marker of sea urchin coelomocytes in short term cultures. Cell Mol Biol 2002;48:345–59.

    PubMed  CAS  Google Scholar 

  • Matranga V, Pinsino A, Celi M, Natoli A, Bonaventura R, Schröder HC, et al. Monitoring chemical and physical stress using sea urchin immune cells. In: Matranga V, editor. Echinodermata. Berlin, Heidelberg: Springer; 2005. p. 85–110.

    Chapter  Google Scholar 

  • Matranga V, Pinsino A, Celi M, Di Bella G, Natoli A. Impacts of UV-B radiation on short term cultures of sea urchin coelomocytes. Mar Biol 2006;149:25–34.

    Article  CAS  Google Scholar 

  • Moseley P. Stress proteins and the immune response. Immunopharm 2000;48:299–302.

    Article  CAS  Google Scholar 

  • Nakano K, Takemura A, Nakamura S, Nakano Y, Iwama GK. Changes in the cellular and organismal stress responses of the subtropical fish, the Indo-Pacific sergeant, Abudefduf vaigiensis, due to the 1997–1998 El Nino/Southern Oscillation. Environ Biol Fish 2004;70:321–9.

    Article  Google Scholar 

  • Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun 2003;304:505–12.

    Article  PubMed  CAS  Google Scholar 

  • Pinsino A, Thorndyke MC, Matranga V. Coelomocytes and post-traumatic response in the common sea star Asterias rubens. Cell Stress Chaperones 2007;12:331–41.

    Article  PubMed  CAS  Google Scholar 

  • REDCOD Project Report. Research on environmental damage caused by chemical ordnance dumped at sea. 2006; http://www.icram_org/II__dip/e107_files/downloads/REDCODfinalreport.pdf.

  • Robert J. Evolution of heat shock protein and immunity. Dev Comp Immunol 2003;27:449–64.

    Article  PubMed  CAS  Google Scholar 

  • Ryan JA, Hightower LE. Stress proteins as molecular biomarkers for environmental toxicology. EXS 1996;77:411–24.

    PubMed  CAS  Google Scholar 

  • Sanders BM. Stress proteins in aquatic organisms: an environmental perspective. Crit Rev Toxicol 1993;23:49–75.

    Article  PubMed  CAS  Google Scholar 

  • Sea Urchin Genome Sequencing Consortium. The genome of the sea urchin Strongylocentrotus purpuratus. Science 2006;314:941–52.

    Article  Google Scholar 

  • Singer C, Zimmermann S, Sures B. Induction of heat shock proteins (hsp70) in the zebra mussel (Dreissena polymorpha) following exposure to platinum group metals (platinum, palladium and rhodium): comparison with lead and cadmium exposures. Aquat Toxicol 2005;75:65–75.

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 1979;76:4350–4.

    Article  PubMed  CAS  Google Scholar 

  • Uney JB, Anderton BH, Thomas SM. Changes in heat shock protein 70 and Ubiquitin mRNA levels in C1300 N2A mouse neuroblastoma cells following treatment with iron. J Neurochem 1993;60:659–65.

    Article  PubMed  CAS  Google Scholar 

  • Unuma T, Ikeda K, Yamano K, Moriyama A, Ohta H. Zinc-binding property of the major yolk protein in the sea urchin) implications of its role as a zinc transporter for gametogenesis. FEBS J. 2007;274:4985–98.

    Article  PubMed  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. Third edition. Washington: US EPA, Office of Water; October 2002. EPA/821/R-02/014.

    Google Scholar 

  • Warnau M, Biondo R, Temara A, Bouquegneau JM, Jangoux M, Dubois P. Distribution of heavy metals in the echinoid Paracentrotus lividus from the Mediterranean Posidonia oceanica ecosystem: seasonal and geographical variations. J Sea Res 1998;39:267–80.

    Article  CAS  Google Scholar 

  • Werner I, Hinton DE. Spatial profiles of hsp70 proteins in Asian clam (Potamocorbula amurensis) in northern San Francisco Bay may be linked to natural rather than anthropogenic stressors. Mar Environ Res 2000;50:379–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research was performed in the framework of the “Research on Environmental Damages Caused by Ordnance Dumped at sea” RED COD project; EU contract number B4-3070/2003/368585/SUB/D.3. V.M. acknowledges partial support from the Italian Space Agency Project MoMa (contract 1/014/06/0). We are grateful to Silvia Giuliani, Marco Matiddi and Marina Penna for their valid contribution during sampling campaigns 2003 and 2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Matranga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinsino, A., Della Torre, C., Sammarini, V. et al. Sea urchin coelomocytes as a novel cellular biosensor of environmental stress: a field study in the Tremiti Island Marine Protected Area, Southern Adriatic Sea, Italy. Cell Biol Toxicol 24, 541–552 (2008). https://doi.org/10.1007/s10565-008-9055-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-008-9055-0

Keywords

Navigation