Skip to main content

Advertisement

Log in

Fate and Effects of 2,4,6-Trinitrotoluene (TNT) from Dumped Ammunition in a Field Study with Fish and Invertebrates

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

2,4,6-Trinitrotoluene (TNT) is the major explosive ingredient in ammunition dumped into lakes and sea after World War II. The aim of the present field study was to study the fate and effect of TNT and its degradation products from dumped ammunition. Artillery shells were cleaved longitudinally to expose TNT and placed in open boxes filled with sediment, and then placed at the sea bottom. Sediment samples were taken in each box at the start and after 3, 9, 13, 20, 24, 33, and 36 months, and the sediments were tested for toxicity with bioassays using Nitocra spinipes (96 h), Hyalella azteca (96 h), and Daphnia magna (24 and 48 h). The result from the bioassays showed no impact of dumped ammunition on the survival of H. azteca and mobility of D. magna. Bioassays with N. spinipes showed significant differences in toxicity between control boxes and boxes with shells after 9 months and thereafter. The mean mortality (± SD) of N. spinipes in boxes with shells was 63 ± 22%, and the mortality in control boxes was 23 ± 17%. No continuous increase in sediment toxicity over time was found. After 3 years, cages with European flounder (Platichtys flesus) and blue mussels (Mytilus edulis) were attached to the boxes. The fish were examined for biochemical and physiological effects 8 weeks later. Exposure to ammunition, which had rested on the sea bottom 3 years, caused no significant effects on body indices, hematological variables, and detoxification and antioxidant enzymes activities in the flounder. The sediment, bile, and blood plasma of exposed fish, and hepatopancreas of exposed mussels, contained no detectable levels of TNT and its metabolites. Only minor disappearance of TNT from the shells could be detected by visual inspection on site (by scuba divers). This study suggests that the survival of sensitive benthic organisms, e.g., N. spinipes, might be negatively affected at an ammunition dumping site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Achtnich C, Fernandes E, Bollag JM, Knackmuss H-J, Lenke H (1999a) Covalent binding of reduced metabolites of [15N3] TNT to soil organic matter during a bioremediation process analyzed by 15N NMR spectroscopy. Environ Sci Technol 33:4448–4456

    Article  CAS  Google Scholar 

  • Achtnich C, Sieglen U, Knackmuss HJ, Lenke H (1999b) Irreversible binding of biologically reduced 2,4,6-trinitrotoluene to soil. Environ Toxicol Chem 18:2416–2423

    Article  CAS  Google Scholar 

  • Andersson A-C, Eriksson J, Hägglund L, Nygren Y, Johansson T, Forsman M (2001) Simulation of TNT leakage in sea environment. FOI, Swedish Defence Research Agency (In Swedish). Reviewed in English by: Karlsson R-M, Sjöström J (2004) Environmental risk assessment of dumped ammunition in natural waters in Sweden: a summary. FOI, Swedish Defence Research Agency, Umeå

    Google Scholar 

  • Army (1984) Determination of the chronic mammalian toxicological effects of TNT (twenty-four month chronic toxicity/carcinogenicity study of trinitrotoluene (TNT) in the Fischer 344 rat). Final report: Phase III. U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD

    Google Scholar 

  • Agency of Toxic Substances and Disease Registry (ATSDR) (1995) Toxicological profile for 2,4,6-trinitrotoluene. Public Health Service, U.S. Department of Health and Human Services, Washington, DC

    Google Scholar 

  • Baker MA, Cerniglia GJ, Zaman A (1990) Determination of glutathione and glutathione disulfide in biological samples. Anal Biochem 190:360–365

    Article  CAS  Google Scholar 

  • Belden JB, Ownby DR, Lotufo GR, Lydy MJ (2005) Accumulation of trinitrotoluene (TNT) in aquatic organisms: Part 2. Bioconcentration in aquatic invertebrates and potential for trophic transfer to channel catfish (Ictalurus punctatus). Chemosphere 58:1161–1168

    Article  CAS  Google Scholar 

  • Berglind R, Koch M (2003) Simulation of TNT leakage in sea environment: the acute toxicity of water and sediment extract on Nitocra spinipes. FOI, Swedish Defence Research Agency. (In Swedish). Reviewed in English by: Karlsson R-M, Sjöström J (2004) Environmental risk assessment of dumped ammunition in natural waters in Sweden: a summary. FOI, Swedish Defence Research Agency, Umeå

    Google Scholar 

  • Bruns-Nagel D, Knicker H, Drzyzga O, Bütehorn U, Steinbach K, Gemsa D, von Löw E (2000) Characterization of 15N-TNT residues after an anaerobic/aerobic treatment of soil/molasses mixtures by solid-state 15N NMR spectroscopy. II. Systematic investigation of whole soil and different humic fractions. Environ Sci Technol 34:1549–1556

    Article  CAS  Google Scholar 

  • Burke MD, Mayer RT (1974) Ethoxyresorufin: Direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthrene. Drug Metab Dispos 2:583–588

    CAS  Google Scholar 

  • Cairns J, Mount DI (1990) Aquatic toxicology. Part 2. Environ Sci Technol 24(2):154–161

    Article  CAS  Google Scholar 

  • Comfort SD, Shea PJ, Hundal LS, Li Z, Woodbury BL, Martin JL, Powers WL (1995) TNT transport and fate in contaminated soil. J Environ Qual 24:1174–1182

    CAS  Google Scholar 

  • Conder JM, Lotufo GR, La Point TW, Steevens JA (2004a) Recommendations for the assessment of TNT toxicity testing in sediment. Environ Toxicol Chem 23:141–149

    Article  CAS  Google Scholar 

  • Conder JM, Point TW, Bowen AT (2004b) Preliminary kinetics and metabolism of 2,4,6-trinitrotoluene and its reduced metabolites in an aquatic oligochaete. Aquat Toxicol 69:199–213

    Article  CAS  Google Scholar 

  • Cribb AE, Leeder JS, Spielberg SP (1989) Use of microplate reader in an assay of glutathione reductase using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 183:195–196

    Article  CAS  Google Scholar 

  • Dave G, Nilsson E (1999) Sediment toxicity and contaminants in the Kattegat and Skagerrak. Aquat Ecosyst Health Manage 2:347–360

    Article  CAS  Google Scholar 

  • Dave G, Nilsson E, Wernersson A-S (2000) Sediment and water phase toxicity and UV- activation of six chemicals used in military explosives. J Aquat Ecosyst Health 3:291–299

    Article  CAS  Google Scholar 

  • Dilley JV, Tyson CA, Spanggord RJ, Sasmore DP, Newell GW, Dacre JC (1982) Short-term oral toxicity of 2,4,6-trinitrotoluene in mice, rats and dogs. J Toxicol Environ Health 9:565–585

    Article  CAS  Google Scholar 

  • Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel K-H, von Löw E (1999) Anaerobic incorporation of the radiolabeled explosive TNT and metabolites into the organic soil matrix of contaminated soil after different treatment procedures. Chemosphere 38:2081–2095

    Article  CAS  Google Scholar 

  • Ek H, Dave G, Birgersson G, Förlin L (2003) Acute effects of 2,4,6-trinitrotoluene (TNT) on haematology parameters and hepatic EROD-activity in rainbow trout (Oncorhynchus mykiss). Aquat Ecosyst Health Managem 6:1–7

    Article  Google Scholar 

  • Ek H, Dave G, Sturve J, Carney Almroth B, Stephensen E, Förlin L, Birgersson G (2005) Tentative biomarkers for 2,4,6-trinitrotoluene (TNT) in fish (Oncorhynchus mykiss). Aquat Toxicol 72:221–230

    Article  CAS  Google Scholar 

  • Elovitz MS, Weber EJ (1999) Sediment-mediated reduction of 2,4,6-trinitrotoluene and fate of the resulting aromatic (poly)amines. Environ Sci Technol 33:2617–2625

    Article  CAS  Google Scholar 

  • Ernster L (1967) DT-diaphorase. Methods Enzymol 10:309–317

    Article  CAS  Google Scholar 

  • Garland WA, Powell ML (1981) Quantitative selected ion monitoring (QSIM) of drugs and/or metabolites in biological matrices. J Chromatogr Sci 19:392–434

    CAS  Google Scholar 

  • Green A, Moore D, Farrar D (1999) Chronic toxicity of 2,4,6-trinitrotoluene to a marine polychaete and an estuarine amphipod. Environ Toxicol Chem 18:1783–1790

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jacoby WB (1974) Glutathione S-transferase, the first enzymatic step on mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Hathaway JA (1977) Trinitrotoluene: A review of reported dose-related effects providing documentation for a workplace standard. J Occup Med 19(5):341–345

    CAS  Google Scholar 

  • Hegesh E, Gruener N, Cohen S, Borchkovsky R, Shuval HI (1970) A sensitive micromethod for the determination of methaemoglobin in blood. Clin Chim Acta 30:679–682

    Article  CAS  Google Scholar 

  • Heikkila R, Cabbat F (1976) A sensitive assay for superoxide dismutase based on the autoxidation of 6-hydroxydopamine. Anal Biochem 75:356–362

    Article  CAS  Google Scholar 

  • HELCOM (Helsinki Commission) (1996) Third periodic assessment of state of the marine environment of the Baltic Sea, 1989–93; Background document. Balt Sea Environ Proc no. 64 B

  • ISO (International Organization for Standardization) (1996) Water quality: Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea). Acute toxicity test. ISO 6341:1996. ISO, Geneva, Switzerland

    Google Scholar 

  • Kaplan DL, Kaplan AM (1982) Thermophilic biotransformation of 2,4,6-trinitrotoluene under stimulated composting conditions. Appl Environ Microbiol 44:757–760

    CAS  Google Scholar 

  • Kelsey JW, Alexander M (1997) Declining bioavailability and inappropriate estimation of risk of persistent compounds. Environ Toxicol Chem 16:582–585

    Article  CAS  Google Scholar 

  • Khan RA, Payne JF (2002) Some factors influencing EROD activity in winter flounder (Pluronectes americanus) exposed to effluent from a pulp and paper mill. Chemosphere 46:235–239

    Article  CAS  Google Scholar 

  • Kirby MF, Matthiessen P, Neall P, Tylor T, Allchin CR, Kelly CA, Maxwell DL, Thain JE (1999) Hepatic EROD activity in flounder (Platichthys flesus) as an indicator of contaminant exposure in English estuaries. Mar Pollut Bull 38:676–686

    Article  CAS  Google Scholar 

  • Klüttgen B, Dülmer U, Engels M, Ratte HT (1994) ADaM, an artificial freshwater for the culture of zooplankton. Water Res 28:743–746

    Article  Google Scholar 

  • Knicker H, Achtnich C, Lenke H (2001) Solid-state 15N NMR analysis of biologically reduced TNT in a soil slurry remediation. J Environ Qual 30:403–410

    Article  CAS  Google Scholar 

  • Kröger M, Schumacher ME, Risse H, Pels G (2004) Biological reduction of TNT as part of a combined biological-chemical procedure for mineralization. Biodegradation 15:241–248

    Article  Google Scholar 

  • Lenke H, Warrelmann J, Daun G, Hund K, Sieglen U, Walter U, Knackmuss H-J (1998) Biological treatment of TNT-contaminated soil. II. Biologically induced immobilization of the contaminants and full-scale application. Environ Sci Technol 32:1964–1971

    Article  CAS  Google Scholar 

  • Leung KH, Yao M, Staerns R, Chiu SHL (1995) Mechanism of bioactivation and covalent binding of 2,4,6-trinitrotoluene. Chem Biol Interact 97:37–51

    Article  CAS  Google Scholar 

  • Levine BS, Furedi EM, Gordon DE, Lish PM, Barkley JJ (1984) Subchronic toxicity of trinitrotoluene in Fischer 344 rats. Toxicology 32:253–265

    Article  CAS  Google Scholar 

  • Levine BS, Furedi EM, Gordon DE, Barkley JJ, Lish PM (1990a) Toxic interactions of the munitions compounds TNT and RDX in F344 rats. Fundam Appl Toxicol 15:373–380

    Article  CAS  Google Scholar 

  • Levine BS, Rust JH, Barkley JJ, Furedi EM, Lish PM (1990b) Six month oral toxicity study of trinitrotoluene in beagle dogs. Toxicology 63:233–244

    Article  CAS  Google Scholar 

  • Liu DHW, Spanggord RJ, Bailey HC, Javitz HS, Jones DCL (1983a) Toxicity of TNT Wastewaters to Aquatic Organisms. SRI International, Menlo Park, CA

    Google Scholar 

  • Liu DHW, Bailey HC, Pearson JG (1983b) Toxicity of a complex munitions wastewater to aquatic organisms. In: Bishop WE, Caldwell RD, Heidolph BB (eds). Aquatic toxicology and hazard assessment: Sixth symposium, ASTM STP 802. American Society for Testing and Materials, Philadelphia, pp 135–150

    Google Scholar 

  • Liu YY, Lu AYH, Stearns RA, Chiu SHL (1992) In vivo covalent binding of [14C] trinitrotoluene to proteins in the rat. Chem Biol Interact 82:1–19

    Article  CAS  Google Scholar 

  • Matthiessen P, Law RJ (2002) Contaminants and their effects on estuarine and coastal organisms in the United Kingdom in the late twentieth century. Environ Pollut 120:739–757

    CAS  Google Scholar 

  • Ownby DR, Belden JB, Lotufo GR, Lydy MJ (2005) Accumulation of trinitrotolune (TNT) in aquatic organisms: Part 1—Bioconcentration and distribution in channel catfish (Ictalurus punctatus). Chemosphere 58:1153–1159

    Article  CAS  Google Scholar 

  • Pennington JC, Hayes CA, Myers KF, Ochman M, Gunnison D, Felt DR, McCormick EF (1995) Fate of 2,4,6-trinitrotoluene in a simulated compost system. Chemosphere 30:429–438

    Article  CAS  Google Scholar 

  • Price CB, Brannon JM, Hayes CA (1997) Effect of redox potential and pH on TNT transformation in soil-water slurries. J Environ Engineer 123:988–992

    Article  CAS  Google Scholar 

  • Reddy G, Chandra SAM, Lish JM, Quails Jr CW (2000) Toxicity of 2,4,6-trinitrotoluene (TNT) in hispid cotton rats (Sigmodon hispidus): Hematological, biochemical and pathological Effects. Int J Toxicol 19:169–177

    Article  CAS  Google Scholar 

  • Ro KS, Venugopal A, Adrian D.D, Constant D, Qaisi K, Valsaraj K.T, Thibodeaux L.J, Roy D (1996) Solobility of 2,4,6-Trinitrotoluene (TNT) in Water. J Chem Eng Data 41:758–761

    Article  CAS  Google Scholar 

  • Robidoux PY, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (1999) Acute toxicity of 2,4,6-trinitrotoluene (TNT) using the earthworm (Etsenia andrei). Ecotoxicol Environ Safe 44:311–321

    Article  CAS  Google Scholar 

  • Robidoux PY, Gong P, Sarrazin M, Bardai G, Paquet L, Hawari J, Dubois C, Sunahara GI (2004) Toxicity assessment of contaminated soils from an antitank firing range. Ecotoxicol Environ Safe 58:300–313

    Article  CAS  Google Scholar 

  • Ronisz D, Förlin L (1998) Interaction of isosafrole, β-naphthoflavone and other CYP1A inducers in liver of rainbow trout (Oncorhynchus mykiss) and eelpout (Zoarces viviparous). Comp Biochem Physiol C 121:289–296

    Article  CAS  Google Scholar 

  • Sandoz Ltd (1973) Atlas of haematology. Sandoz Ltd, Basle, Switzerland

    Google Scholar 

  • Shen CF, Guiot SG, Thiboutot S, Ampleman G, Hawari J (1998) Fate of explosives and their metabolites in bioslurry treatment processes. Biodegradation 8:339–347

    Article  CAS  Google Scholar 

  • Simini M, Wentsel RS, Checkai RT, Philllips CT, Chester NA, Major MA, Amos JC (1995) Evaluation of soil toxicity at Joliet Army Ammunition Plant. Environ Toxicol Chem 14:623–630

    CAS  Google Scholar 

  • SIS (Swedish Standardization Organization) (1991) Determination of acute lethal toxicity of chemical substances and effluents to Nitocra spinipes Boeck: Static procedure. Swedish Standard SS 02 81 06 (in Swedish)

    Google Scholar 

  • Steevens JA, Duke BM, Lotufo GR, Bridges TS (2002) Toxicity of the explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-l,3,5,7-tetranitro-1,3,5,7-tetrazocine in sediments to Chironomm tentans and Hyalella azteca: low-dose hormesis and high-dose mortality. Environ Toxicol Chem 21:1475–1482

    Article  CAS  Google Scholar 

  • Steinberg SM, Pignatello JJ, Sawhney BL (1987) Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores. Environ Sci Technol 21:1201–1208

    Article  CAS  Google Scholar 

  • Stephensen E, Svavarsson J, Sturve J, Ericson G, Adolfsson-Erici M, Förlin L (2000) Biochemical indicators of pollution exposure in shorthorn sculpin (Myoxocephalus scorpius), caught in four harbours on the southwest coast of Iceland. Aquat Toxicol 48:431–442

    Article  CAS  Google Scholar 

  • Stephensen E, Sturve J, Förlin L (2002) Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver. Comp Biochem Physiol C 133:435–442

    Google Scholar 

  • Sunahara GI, Robidoux PY, Gong P, Lachance B, Rocheleau S, Dodard SG, Sarrazin M, Hawari J, Thiboutot S, Ampleman G, Renoux AY (2001) Laboratory and field approaches to characterize the soil ecotoxicology of polynitro explosives. In: Greenberg BM, Hull RN, Roberts Jr MH, Gensemer RW (eds) Environmental toxicology and risk assessment: Science, policy and standardizations. Implications for enviornmental decisions, volume 10, ASTM STP 1403. American Society for Testing and Materials, West Conshohocken, PA, pp 293–312

    Google Scholar 

  • Talmage SS, Opresko DM, Maxwell CS, Welsh CJE, Cretella FM, Reno PH, Daniel FB (1999). Nitroaromatic munition compounds: Environmental effects and screening values. Rev Environ Contam Toxicol 161:1–156

    CAS  Google Scholar 

  • Townsend DM, Myers TE (1996) Recent developments in formulating descriptors for subsurface transformation and sorption of TNT, RDX, and HMX. Technical report IRRP-96-1, U.S. Army Engineer Waterways Station, Vicksburg, MS

  • Vandeputte C, Guizon I, Genestie-Denis I, Vannier B, Lorenzon G (1994) A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: performance study of a new miniaturized protocol. Cell Biol Toxicol 10:415–421

    Article  CAS  Google Scholar 

  • Wernersson A-S, Dave G (1997) Phototoxicity Identification by Solid Phase Extraction and Photoinduced Toxicity to Daphnia magna. Arch Environ Contam Toxicol 32:268–273

    Article  CAS  Google Scholar 

  • White JC, Hunter M, Nam K, Pignatello JJ, Alexander M (1999) Correlation between biological and physical availabilities of phenanthrene in soils and soil humin in aging experiments. Environ Toxicol Chem 18:1720–1727

    Article  CAS  Google Scholar 

  • Yinon J (1990) Toxicity and metabolism of explosives. CRC Press, Boca Raton, FL

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Swedish armed forces and Birgit and Birger Wåhlströms foundation. We thank the 4th Mine Warfare Flotilla for professional assistance during sampling, and Åke Larsson and Lars Förlin for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helene Ek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ek, H., Dave, G., Nilsson, E. et al. Fate and Effects of 2,4,6-Trinitrotoluene (TNT) from Dumped Ammunition in a Field Study with Fish and Invertebrates. Arch Environ Contam Toxicol 51, 244–252 (2006). https://doi.org/10.1007/s00244-005-0117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-005-0117-5

Keywords

Navigation