Skip to main content

Advertisement

Log in

Hesperetin attenuates the highly reducing sugar-triggered inhibition of osteoblast differentiation

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Diabetic bone disease is associated with increased oxidative damage and 2-deoxy-d-ribose (dRib) is used to induce oxidative damage similar to that observed in diabetics. To determine if hesperetin (3′,5,7-trihydroxy-4-methoxyflavanone) could influence osteoblast dysfunction induced by dRib, osteoblastic MC3T3-E1 cells were treated with dRib and hesperetin. Then, markers of osteoblast function and oxidative damage were examined. Hesperetin (10−7–10−5 M) caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and total antioxidant potential of MC3T3-E1 cells in the presence of 20 mM dRib (p < 0.05). Moreover, hesperetin (10−7 M) decreased cellular protein carbonyl (PCO), advanced oxidation protein products (AOPP), and malondialdehyde (MDA) contents of osteoblastic MC3T3-E1 cells in the presence of 20 mM dRib. These results demonstrate that hesperetin attenuates dRib-induced damage, suggesting that hesperetin may be a useful dietary supplement for minimizing oxidative injury in diabetes related bone diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica. 2001;31:469–97.

    Article  PubMed  CAS  Google Scholar 

  • Balint E, Szabo P, Marshall CF, Sprague SM. Glucose-induced inhibition of in vitro bone mineralization. Bone (NY). 2001;28:21–8.

    CAS  Google Scholar 

  • Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications. A new perspective on an old paradigm. Diabetes. 1999;48:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  • Bunn HF, Higgins PJ. Reaction of monosaccharides with proteins: possible evolutionary significance. Science. 1981;213:222–4.

    Article  PubMed  CAS  Google Scholar 

  • Clarkson MR, Murphy M, Gupta S, Lambe T, Mackenzie HS, Godson C, Martin F, Brady HR. High glucose-altered gene expression in mesangial cells. Actin-regulatory protein gene expression is triggered by oxidative stress and cytoskeletal disassembly. J Biol Chem. 2002;277:9707–12.

    Article  PubMed  CAS  Google Scholar 

  • Crespy V, Morand C, Besson C, Cotelle N, Vezin H, Demigne C, et al. The splanchnic metabolism of flavonoids highly differed according to the nature of the compound. Am J Physiol Gastrointest Liver Physiol. 2003;284:G980–8.

    PubMed  CAS  Google Scholar 

  • Domon S, Shimokawa H, Yamaguchi S, Kunimichi S. Temporal and spatial mRNA expression of bone sialoprotein and type I collagen during rodent tooth movement. Eur J Orthod. 2001;23:339–48.

    Article  PubMed  CAS  Google Scholar 

  • Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23:599–622.

    Article  PubMed  CAS  Google Scholar 

  • Horcajada-Molteni M, Chanteranne B, Lebecque P, Davicco MJ, Coxam V, Young A, et al. Amylin and bone metabolism in streptozotocin-induced diabetic rats. J Bone Miner Res. 2001;16:958–65.

    Article  PubMed  CAS  Google Scholar 

  • Hunt JV, Dean RT, Wolff SP. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J. 1988;256:205–12.

    PubMed  CAS  Google Scholar 

  • Ihara Y, Toyokuni S, Uchida K, Odaka H, Tanaka T, Ikeda H, et al. Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes. Diabetes. 1999;48:927–32.

    Article  PubMed  CAS  Google Scholar 

  • Kanno S, Anuradha CD, Hirano S. Localization of zinc after in vitro mineralization in osteoblastic cells. Biol Trace Elem Res. 2001;83:39–47.

    Article  PubMed  CAS  Google Scholar 

  • Kletsas D, Barbieri D, Stathakos D, Botti B, Bergamini S, Tomasi A, Monti D, et al. The highly reducing sugar 2-deoxy-d-ribose induces apoptosis in human fibroblasts by reduced glutathione depletion and cytoskeletal disruption. Biochem Biophys Res Commun. 1998;243:416–25.

    Article  PubMed  CAS  Google Scholar 

  • Koh G, Suh KS, Chon S, Oh S, Woo JT, Kim SW, et al. Elevated cAMP level attenuates 2-deoxy-d-ribose-induced oxidative damage in pancreatic β-cells. Arch Biochem Biophys. 2005;438:70–9.

    Article  PubMed  CAS  Google Scholar 

  • Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med. 2002;32:790–6.

    Article  PubMed  CAS  Google Scholar 

  • Lien YH, Stern R, Fu CCC, Siegel RC. Inhibition of collagen fibril formation in vitro and subsequent cross-linking by glucose. Science. 1984;255:1489–91.

    Article  Google Scholar 

  • Lowry OH, Roberts NR, Wu M-L, Hixon WS, Crawford EJ. The quantitative histochemistry of brain. II. Enzyme measurements. J Biol Chem. 1954;207:19–37.

    PubMed  CAS  Google Scholar 

  • Matsuoka T, Kajimoto Y, Watada H, Kaneto H, Kishimoto M, Umayahara Y, et al. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J Clin Invest. 1997;99:144–50.

    Article  PubMed  CAS  Google Scholar 

  • Monnier VM. Nonenzymatic glycosylation, the Maillard reaction and the aging process. J Gerontol. 1990;45:B105–18.

    PubMed  CAS  Google Scholar 

  • Narisawa S, Frohlander N, Millan JL. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn. 1997;208:432–46.

    Article  PubMed  CAS  Google Scholar 

  • Noda M. Current topics in pharmacological research on bone metabolism: regulation of bone mass by the function of endogenous modulators of bone morphogenetic protein in adult stage. J Pharmacol Sci. 2006;100:211–4.

    Article  PubMed  CAS  Google Scholar 

  • Ozgocmen S, Kaya H, Fadillioglu E, Aydogan R, Yilmaz Z. Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem. 2007;295:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Robertson RP, Olson LK, Zhang HJ. Differentiating glucose toxicity from glucose desensitization: a new message from the insulin gene. Diabetes. 1994;43:1085–9.

    Article  PubMed  CAS  Google Scholar 

  • Robertson RP, Tsai P, Little SA, Zhang HJ, Walseth TF. Receptor-mediated adenylate cyclase-coupled mechanism for PGE2 inhibition of insulin secretion in HIT cells. Diabetes. 1987;36:1047–53.

    Article  PubMed  CAS  Google Scholar 

  • Seeman E. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis. Osteoporos Int. 2003;14 (Suppl. 3):S2–8.

    PubMed  Google Scholar 

  • Silberberg M, Morand C, Mathevon T, Besson C, Manach C, Scalbert A, et al. The bioavailability of polyphenols is highly governed by the capacity of the intestine and of the liver to secrete conjugated metabolites. Eur J Nutr. 2006;45(2):88–96.

    Article  PubMed  CAS  Google Scholar 

  • Stein GS, Lian JB, Owen TA. Relationship of cell growth to the regulation of tissue-specific gene expression during progressive osteoblast differentiation. The FASEB Journal. 1990;4:111–23.

    Google Scholar 

  • Terada M, Inaba M, Yano Y, Hasuma T, Nishizawa Y, Morii H, et al. Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone. 1998;22:17–23.

    Article  PubMed  CAS  Google Scholar 

  • Vissers MC, Winterbourn CC. Oxidative damage to fibronectin. I. The effects of the neutrophil myeloperoxidase system and HOCl. Arch Biochem Biophys. 1991;285:53–9.

    Article  PubMed  CAS  Google Scholar 

  • Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49:1304–13.

    Article  PubMed  CAS  Google Scholar 

  • Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J. 1987;245:243–50.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Korea Research Foundation Grant funded by Korean Government (MOEHRD; KRF-2005-F00085) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, E.M., Kim, Y.H. Hesperetin attenuates the highly reducing sugar-triggered inhibition of osteoblast differentiation. Cell Biol Toxicol 24, 225–231 (2008). https://doi.org/10.1007/s10565-007-9031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-007-9031-0

Keywords

Navigation