Skip to main content

Advertisement

Log in

Development of Bifunctional Catalysts for the Conversions of Cellulose or Cellobiose into Polyols and Organic Acids in Water

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The efficient utilization of renewable lignocellulosic biomass has attracted much attention in recent years. One of the most desirable routes for the transformation of cellulose, the main component of lignocellulosic biomass, is to convert cellulose under mild conditions selectively into a value-added chemical or into a platform compound, which can be easily converted to versatile chemicals or fuels in the subsequent step. The activation of cellulose, typically starting by the cleavage of its glycosidic bonds, under mild conditions and the selective formation of a particular molecule are critical challenges. Bifunctional catalysts coupling the acid sites for the activation of the glycosidic bonds via hydrolysis and the metal nanoparticles for the hydrogenation or oxidation of glucose intermediate have shown promising performances for the conversion of cellulose or cellobiose into hexitols or gluconic acid in water under mild conditions. This short review has summarized some recent studies on the development of such bifunctional catalysts or catalytic systems. The following two kinds of bifunctional catalysts or catalytic systems have mainly been discussed: (1) a liquid acid in combination with a supported metal catalyst, (2) solid acid-supported metal nanoparticles. Emphases have been laid on the conversions of cellulose or cellobiose into sorbitol and gluconic acid catalyzed respectively by ruthenium and gold nanoparticles loaded on carbon nanotubes bearing acid sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) Science 311:484

    Article  CAS  Google Scholar 

  2. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Braday JW, Foust TD (2007) Science 315:804

    Article  CAS  Google Scholar 

  3. Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164

    Article  CAS  Google Scholar 

  4. Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493

    Article  CAS  Google Scholar 

  5. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  Google Scholar 

  6. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411

    Article  CAS  Google Scholar 

  7. Kamm B (2007) Angew Chem Int Ed 46:5056

    Article  CAS  Google Scholar 

  8. Gallezot P (2008) ChemSusChem 1:734

    Article  CAS  Google Scholar 

  9. Ruppert AM, Weinberg K, Palkovits R (2012) Angew Chem Int Ed 51:2564

    Article  CAS  Google Scholar 

  10. Michel H (2012) Angew Chem Int Ed 51:2516

    Article  CAS  Google Scholar 

  11. Klemm D, Heublein B, Fink HP, Bohn A (2005) Angew Chem Int Ed 44:3358

    Article  CAS  Google Scholar 

  12. Zhou CH, Xia X, Lin CX, Tong DS, Beltramini J (2011) Chem Soc Rev 40:5588

    Article  CAS  Google Scholar 

  13. Dhepe PL, Fukuoka A (2007) Catal Surv Asia 11:186

    Article  CAS  Google Scholar 

  14. Dhepe PL, Fukuoka A (2008) ChemSusChem 1:969

    Article  CAS  Google Scholar 

  15. Fukuoka A, Dhepe PL (2009) Chem Rec 9:224

    Article  CAS  Google Scholar 

  16. Yang P, Kobayashi H, Fukuoka A (2011) Chin J Catal 32:716

    Article  CAS  Google Scholar 

  17. Kobayashi H, Komanoya T, Guha SK, Hara K, Fukuoka A (2011) Appl Catal A 409–410:13

    Google Scholar 

  18. Kobayashi H, Ohta H, Fukuoka A (2012) Catal Sci Technol 2. doi:10.1039/C2CY00500J

  19. Van de Vyver S, Geboer J, Jacobs PA, Sels BF (2011) ChemCatChem 3:82

    Article  Google Scholar 

  20. Geboers JA, Van de Vyver S, Ooms R, Op de Beeck B, Jacobs PA, Sels BF (2011) Catal. Sci. Technol. 1:714

    Article  Google Scholar 

  21. Hara M (2010) Energy Environ Sci 3:601

    Article  CAS  Google Scholar 

  22. Shimizu K, Satsuma A (2011) Energy Environ Sci 4:3140

    Article  CAS  Google Scholar 

  23. Rinaldi R, Schüth F (2009) Energy Environ Sci 2:610

    Article  CAS  Google Scholar 

  24. Rinaldi R, Schüth F (2009) ChemSusChem 2:1096

    Article  CAS  Google Scholar 

  25. Cabiac A, Guillon E, Chambon F, Pinel C, Rataboul F, Essayem N (2011) Appl Catal A 402:1

    Article  CAS  Google Scholar 

  26. Zhang Y-HP, Lynd LR (2004) Biotechnol Bioeng 88:797

    Article  CAS  Google Scholar 

  27. Zhao H, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE (2006) Energy Fuels 20:807

    Article  CAS  Google Scholar 

  28. Zhao H, Holladay JE, Wang Y, White JM, Zhang ZC (2007) J Biobased Mater Bioenergy 1:210

    Article  Google Scholar 

  29. Shimizu K, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Green Chem 11:1627

    Article  CAS  Google Scholar 

  30. Ogasawara Y, Itagaki S, Yamaguchi K, Mizuno N (2011) ChemSusChem 4:519

    Article  CAS  Google Scholar 

  31. Deng WP, Liu M, Zhang QH, Tan XS, Wang Y (2010) Chem Commun 46:2268

    Article  Google Scholar 

  32. Deng WP, Liu M, Zhang QH, Wang Y (2011) Catal Today 164:461

    Article  CAS  Google Scholar 

  33. Onda A, Ochi T, Yanagisawa K (2008) Green Chem 10:1033

    Article  CAS  Google Scholar 

  34. Van de Vyver S, Peng L, Geboers J, Schepers H, de Clippel F, Gommes CJ, Goderis B, Jacobs PA, Sels BF (2010) Green Chem 12:1560

    Article  Google Scholar 

  35. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) J Am Chem Soc 130:1278

    Article  Google Scholar 

  36. Pang J, Wang A, Zheng M, Zhang T (2010) Chem Commun 46:6935

    Article  CAS  Google Scholar 

  37. Kobayashi H, Komanoya T, Hara K, Fukuoka A (2010) ChemSusChem 3:440

    Article  CAS  Google Scholar 

  38. Lai D, Deng L, Li J, Liao B, Guo Q, Fu Y (2011) ChemSusChem 4:55

    Article  CAS  Google Scholar 

  39. Rinaldi R, Palkovits R, Schüth F (2008) Angew Chem Int Ed 47:8047

    Article  CAS  Google Scholar 

  40. Takagaki A, Tagusagawa C, Domen K (2008) Chem Commun 5363

  41. Simonetti DA, Dumesic JA (2009) Catal Rev 51:441

    Article  CAS  Google Scholar 

  42. Huber GW, Shabaker JW, Dumesic JA (2003) Science 300:2075

    Article  CAS  Google Scholar 

  43. Huber GW, Cortright RD, Dumesic JA (2004) Angew Chem Int Ed Engl 43:1549

    Article  CAS  Google Scholar 

  44. Metzger JO (2006) Angew Chem Int Ed 45:696

    Article  CAS  Google Scholar 

  45. Yan N, Zhao C, Luo C, Dyson PJ, Liu H, Kou Y (2006) J Am Chem Soc 128:8714

    Article  CAS  Google Scholar 

  46. Fukuoka A, Dhepe PL (2006) Angew Chem Int Ed 45:5161

    Article  CAS  Google Scholar 

  47. Luo C, Wang S, Liu H (2007) Angew Chem Int Ed 46:7636

    Article  CAS  Google Scholar 

  48. Nolen SA, Liotta CL, Eckert CA, Gläser R (2003) Green Chem 5:663

    Article  CAS  Google Scholar 

  49. Chamblee TS, Weikel RR, Nolen SA, Liotta CL, Eckert CA (2004) Green Chem 6:382

    Article  CAS  Google Scholar 

  50. Saka S, Ueno T (1999) Cellulose 6:177

    Article  CAS  Google Scholar 

  51. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Ind Eng Chem Res 39:2883

    Article  CAS  Google Scholar 

  52. Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A (2010) Green Chem 12:972

    Article  CAS  Google Scholar 

  53. Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Chem Commun 47:5590

    Article  CAS  Google Scholar 

  54. Liang G, Wu C, He L, Ming J, Cheng H, Zhuo L, Zhao F (2011) Green Chem 13:839

    Article  CAS  Google Scholar 

  55. Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B (2010) Chem Commun 46:3577

    Article  CAS  Google Scholar 

  56. Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Green Chem 13:2167

    Article  CAS  Google Scholar 

  57. Deng W, Tan X, Fang W, Zhang Q, Wang Y (2009) Catal Lett 133:167

    Article  CAS  Google Scholar 

  58. Kobayashi H, Ito Y, Komanoya T, Hoska Y, Dhepe PL, Kasai K, Hara K, Fukuoka A (2011) Green Chem 13:326

    Article  CAS  Google Scholar 

  59. Ding L, Wang A, Zheng M, Zhang T (2010) ChemSusChem 3:818

    Article  CAS  Google Scholar 

  60. Van de Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L, Van Tendeloo G, Jacobs P, Sels B (2010) ChemSusChem 3:698

    Article  Google Scholar 

  61. Zhang YHP, Cui J, Lynd LR, Kuang LR (2006) Biomacromolecules 7:644

    Article  CAS  Google Scholar 

  62. Kontturi E, Vuorinen T (2009) Cellulose 16:65

    Article  CAS  Google Scholar 

  63. Deng W, Liu M, Tan X, Zhang Q, Wang Y (2010) J Catal 271:22

    Article  CAS  Google Scholar 

  64. Serp P, Corras M, Kalck P (2003) Appl Catal A 253:337

    Article  CAS  Google Scholar 

  65. Kang J, Zhang S, Zhang Q, Wang Y (2009) Angew Chem Int Ed 48:2565

    Article  CAS  Google Scholar 

  66. Kobayashi H, Matsuhashi H, Komanoya T, Hara K, Fukuoka A (2011) Chem Commun 47(8):2366

    Article  CAS  Google Scholar 

  67. Komanoya T, Kobayashi H, Hara K, Chun W, Fukuoka A (2011) Appl Catal A 407:188

    Article  CAS  Google Scholar 

  68. Kasehagen L, Chester W (1962) US Patent 3047635

  69. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Angew Chem Int Ed 47:8510

    Article  CAS  Google Scholar 

  70. Liu Y, Luo C, Liu H (2012) Angew Chem Int Ed 51:3249

    Article  CAS  Google Scholar 

  71. Yackel EC, Kenyon WO (1942) J Am Chem Soc 64:121

    Article  CAS  Google Scholar 

  72. Kenyon RL, Hasek RH, Davy LG, Broadbooks KJ (1949) Ind Eng Chem 41:2

    Article  CAS  Google Scholar 

  73. Perez DS, Montanari S, Vignon MR (2003) Biomacromolecules 4:1417

    Article  Google Scholar 

  74. Besson M, Gallezot P (2000) Catal Today 57:127

    Article  CAS  Google Scholar 

  75. Biella S, Prati L, Rossi M (2002) J Catal 206:242

    Article  CAS  Google Scholar 

  76. Comotti M, Pina CD, Matarrese R, Rossi M (2004) Angew Chem Int Ed 43:5812

    Article  CAS  Google Scholar 

  77. Önal Y, Schimpf S, Claus P (2004) J Catal 223:122

    Article  Google Scholar 

  78. Basheer C, Swaminathan S, Lee HK, Valiyaveettil S (2005) Chem Commun 409

  79. Baatz C, Prüße U (2007) J Catal 249:34

    Article  CAS  Google Scholar 

  80. Onda A, Ochi T, Kajiyoshi K, Yanagisawa K (2008) Appl Catal A 343:49

    Article  CAS  Google Scholar 

  81. Ishida T, Kinoshita N, Okatsu H, Akita T, Takei T, Haruta M (2008) Angew Chem Int Ed 47:9265

    Article  CAS  Google Scholar 

  82. Tan XS, Deng WP, Liu MQ, Zhang H, Wang Y (2009) Chem Commun 7179

  83. Onda A, Ochi T, Yanagisawa K (2011) Catal Commun 12:421

    Article  CAS  Google Scholar 

  84. Zhang J, Liu X, Hedhili MN, Zhu Y, Han Y (2011) ChemCatChem 3:1294

    Article  CAS  Google Scholar 

  85. An D, Ye A, Deng W, Zhang Q, Wang Y (2012) Chem Eur J 18:2938

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21173172, 21103143 and 21033006), the Research Fund for the Doctoral Program of High Education (No. 20090121110007), the National Basic Research Program of China (No. 2010CB732303), the Key Scientific Project of Fujian Province (2009HZ0002-1), and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, W., Wang, Y., Zhang, Q. et al. Development of Bifunctional Catalysts for the Conversions of Cellulose or Cellobiose into Polyols and Organic Acids in Water. Catal Surv Asia 16, 91–105 (2012). https://doi.org/10.1007/s10563-012-9136-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-012-9136-1

Keywords

Navigation