Skip to main content

Advertisement

Log in

Glucose-based carbon materials as supports for the efficient catalytic transformation of cellulose directly to ethylene glycol

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Glucose-derived carbon materials were synthesized and used to support Ru–W bimetallic catalysts that provide the one-pot conversion of cellulose to ethylene glycol (EG). The catalysts prepared on the carbonized glucose (after hydrothermal synthesis and carbonization) were the most efficient for the production of EG, with yields around 30% after 5 h. Moreover, the addition of oxygenated groups to the carbon material surface enhanced the yield of EG (48% after 3 h), possibly as a result of the preferential hydrolysis of cellulose to glucose and suppressing of glucose isomerization to fructose. Furthermore, the catalytic system showed excellent stability after repeated uses, at least up to three cycles. As a result, the synthesized catalysts seem to be promising alternatives in order to produce EG directly from cellulose by a more economical (supports derived from biomass), faster (one-pot reaction) and easier (combined catalyst synthesis) process.

Graphic abstract

Glucose-derived carbon materials were presented as efficient and cheaper alternatives to carbon nanotubes as supports of Ru–W catalysts for the production of EG directly from cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BET:

Brunauer–Emmett–Teller

CG:

Carbonized glucose

CNT:

Carbon nanotubes

EG:

Ethylene glycol

ERY:

Erythritol

GA:

Glycolaldehyde

GLU:

Glucose

GLY:

Glycerol

HMF:

5-Hydroxymethylfurfural

HPLC:

High performance liquid chromatography

HTC:

Hydrothermal carbonization

PG:

Propylene glycol

RAC:

Retro-aldol condensation

RI:

Refractive index

SOR:

Sorbitol

TG:

Thermogravimetry

TOC:

Total organic carbon

References

  • Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:7965–8216

    Article  CAS  Google Scholar 

  • Cao Y, Wang J, Kang M, Zhu Y (2014) Efficient synthesis of ethylene glycol from cellulose over Ni–WO3/SBA-15 catalysts. J Mol Catal A: Chem 381:46–53

    Article  CAS  Google Scholar 

  • Cao Y, Wang J, Kang M, Zhu L (2016) Catalytic conversion of glucose and cellobiose into ethylene glycol over various tunsgten-based catalysts. J Fuel Chem Technol 44:845–852

    Article  CAS  Google Scholar 

  • Chai J, Zhu S, Cen Y, Guo J, Wang J, Fan W (2017) Effect of tungsten surface density of WO3–ZrO2 on its catalytic performance in hydrogenolysis of cellulose to ethylene glycol. RSC Adv 7:8567–8574

    Article  CAS  Google Scholar 

  • Dabbawala AA, Mishra DK, Hwang J (2016) Selective hydrogenation of d-glucose using amine functionalized nanoporous polymer supported Ru nanoparticles based catalyst. Catal Today 265:163–173

    Article  CAS  Google Scholar 

  • Deng W, Tan X, Fang W, Zhang Q, Wang Y (2009) Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium catalyst. Catal Lett 133:167

    Article  CAS  Google Scholar 

  • Deng W, Zhang H, Xue L, Zhang Q, Wang Y (2015) Selective activation of the C–O bonds in lignocellulosic biomass for the efficient production of chemicals. Chin J Catal 36:1440–1460

    Article  CAS  Google Scholar 

  • Falco C, Marco-Lozar JP, Salinas-Torres D, Morallón E, Cazorla-Amorós D, Titirici MM, Lozano-Castelló D (2013) Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature. Carbon 62:346–355

    Article  CAS  Google Scholar 

  • Guo X, Dong H, Li B, Dong L, Mu X, Chen X (2017) Influence of the functional groups of multiwalled carbon nanotubes on performance of Ru catalysts in sorbitol hydrogenolysis to glycols. J Mol Catal A: Chem 426:79–87

    Article  CAS  Google Scholar 

  • Han JW, Lee H (2012) Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catal Commun 19:115–118

    Article  CAS  Google Scholar 

  • Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805

    Article  CAS  Google Scholar 

  • Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem Int Ed 47:8510–8513

    Article  CAS  Google Scholar 

  • Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Shu Y, Stottlemyer AL, Chen JG (2009) Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts. Catal Today 147:77–85

    Article  CAS  Google Scholar 

  • Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378

    Article  CAS  Google Scholar 

  • Kobayashi H, Ohta H, Fukuoka A (2012) Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. Catal Sci Technol 2:869–883

    Article  CAS  Google Scholar 

  • Kruse A, Dahmen N (2018) Hydrothermal biomass conversion: quo vadis? J Supercrit Fluids 134:114

    Article  CAS  Google Scholar 

  • Kumar M, Oyedun AO, Kumar A (2018) A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sustain Energy Rev 81:1742–1770

    Article  Google Scholar 

  • Li C, Zheng M, Wang A, Zhang T (2012) One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energy Environ Sci 5:6383–6390

    Article  CAS  Google Scholar 

  • Li N, Zheng Y, Wei L, Teng H, Zhou J (2017) Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol. Green Chem 19:682–691

    Article  CAS  Google Scholar 

  • Li X, Guo T, Xia Q, Liu X, Wang Y (2018) One-pot catalytic transformation of lignocellulosic biomass into alkylcyclohexanes and polyols. ACS Sustain Chem Eng 6:4390–4399

    Article  CAS  Google Scholar 

  • Liu Y, Luo C, Liu H (2012) Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem 124:3303–3307

    Article  Google Scholar 

  • Liu S, Tamura M, Nakagawa Y, Tomishige K (2014) One-pot conversion of cellulose into n-Hexane over the Ir–ReOx/SiO2 catalyst combined with HZSM-5. ACS Sustainable Chem Eng 2:1819–1827

    Article  CAS  Google Scholar 

  • Liu H, Qin L, Wang X, Du C, Sun D, Meng X (2016) Hydrolytic hydro-conversion of cellulose to ethylene glycol over bimetallic CNTs-supported NiWB amorphous alloy catalyst. Catal Commun 77:47–51

    Article  CAS  Google Scholar 

  • Liu Y, Liu Y, Zhang Y (2019) The synergistic effects of Ru and WOx for aqueous-phase hydrogenation of glucose to lower diols. Appl Catal B 242:100–108

    Article  CAS  Google Scholar 

  • Ma J, Shi S, Jia X, Xia F, Ma H, Gao J, Xu J (2019) Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J Energy Chem 36:74–86

    Article  Google Scholar 

  • Manaenkov OV, Mann JJ, Kislitza OV, Losovyj Y, Stein BD, Morgan DG et al (2016) Ru-containing magnetically recoverable catalysts: a sustainable pathway from cellulose to ethylene and propylene glycols. ACS Appl Mater Interfaces 8:21285–21293

    Article  CAS  PubMed  Google Scholar 

  • Ogo S, Okuno Y, Sekine H, Manabe S, Yabe T, Onda A, Sekine Y (2017) Low-temperature direct catalytic hydrothermal conversion of biomass cellulose to light hydrocarbons over Pt/Zeolite catalysts. ChemistrySelect 2:6201–6205

    Article  CAS  Google Scholar 

  • Rey-Raap N, Ribeiro LS, Órfão JJM, Figueiredo JL, Pereira MFR (2019) Catalytic conversion of cellulose to sorbitol over Ru supported on biomass-derived carbon-based materials. Appl Catal B. https://doi.org/10.1016/j.apcatb.2019.117826

    Article  Google Scholar 

  • Ribeiro LS, Órfão JJM, Pereira MFR (2015) Enhanced direct production of sorbitol by cellulose ball-milling. Green Chem 17:2973–2980

    Article  CAS  Google Scholar 

  • Ribeiro LS, Delgado JJ, De Melo Órfão JJ, Pereira MFR (2017) Direct conversion of cellulose to sorbitol over ruthenium catalysts: influence of the support. Catal Today 279:244–251

    Article  CAS  Google Scholar 

  • Ribeiro LS, Órfão J, Órfão JJM, Pereira MFR (2018a) Hydrolytic hydrogenation of cellulose to ethylene glycol over CNT supported Ru–W bimetallic catalysts. Cellulose 25:2259–2272

    Article  CAS  Google Scholar 

  • Ribeiro LS, Órfão JJM, Pereira MFR (2018b) Insights into the effect of the catalytic functions on selective production of ethylene glycol from lignocellulosic biomass over carbon supported Ru and W catalysts. Bioresour Technol 263:402–409

    Article  CAS  PubMed  Google Scholar 

  • Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51:2564–2601

    Article  CAS  Google Scholar 

  • Sevilla M, Yu L, Zhao L, Ania CO, Titiricic MM (2014) Surface modification of CNTs with n-doped carbon: an effective way of enhancing their performance in supercapacitors. ACS Sustainable Chem Eng 2:1049–1055

    Article  CAS  Google Scholar 

  • Tai Z, Zhang J, Wang A, Pang J, Zheng M, Zhang T (2013) Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of raney Ni and Tungstic acid. ChemSusChem 6:652–658

    Article  CAS  PubMed  Google Scholar 

  • Van De Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L, Van Tendeloo G, Jacobs PA, Sels BF (2010) Selective bifunctional catalytic conversion of cellulose over reshaped ni particles at the tip of carbon nanofibers. ChemSusChem 3:698–701

    Article  CAS  PubMed  Google Scholar 

  • Van De Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3:82–94

    Article  CAS  Google Scholar 

  • Wang A, Zhang T (2013) One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc Chem Res 46:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhu L, Peng S, Peng F, Yu H, Yang J (2012) High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst. Renew Energy 37:192–196

    Article  CAS  Google Scholar 

  • Wataniyakul P, Boonnoun P, Quitain AT, Sasaki M, Kida T, Laosiripojana N, Shotipruk A (2018) Preparation of hydrothermal carbon as catalyst support for conversion of biomass to 5-hydroxymethylfurfural. Catal Commun 104:41–47

    Article  CAS  Google Scholar 

  • Wiesfeld JJ, Peršolja P, Rollier FA, Elemans-Mehring AM, Hensen EJM (2019) Cellulose conversion to ethylene glycol by tungsten oxide-based catalysts. Mol Catal 473:110400

    Article  Google Scholar 

  • Xi J, Ding D, Shao Y, Liu X, Lu G, Wang Y (2014) Production of ethylene glycol and its monoether derivative from cellulose. ACS Sustain Chem Eng 2:2355–2362

    Article  CAS  Google Scholar 

  • Xiang M, Liu J, Fu W, Tang T, Wu D (2017) Improved activity for cellulose conversion to levulinic acid through hierarchization of ETS-10 zeolite. ACS Sustain Chem Eng 5:5800–5809

    Article  CAS  Google Scholar 

  • Xiao Z, Jin S, Pang M, Liang C (2013) Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly efficient CuCr catalysts. Green Chem 15:891–895

    Article  CAS  Google Scholar 

  • Xiao Z, Fan Y, Cheng Y, Zhang Q, Ge Q, Sha R, Ji J, Mao J (2018a) Metal particles supported on SiO2–OH nanosphere: new insight into interactions with metals for cellulose conversion to ethylene glycol. Fuel 215:406–416

    Article  CAS  Google Scholar 

  • Xiao Z, Zhang Q, Chen T, Wang X, Fan Y, Ge Q et al (2018b) Heterobimetallic catalysis for lignocellulose to ethylene glycol on nickel–tungsten catalysts: influenced by hydroxy groups. Fuel 230:332–343

    Article  CAS  Google Scholar 

  • Xu S, Yan X, Bu Q, Xia H (2017) Catalytic conversion of cellulose into polyols using carbon-nanotube-supported monometallic Pd and bimetallic Pd–Fe catalysts. Cellulose 24:2403–2413

    Article  CAS  Google Scholar 

  • Yabushita M, Kobayashi H, Fukuoka A (2014) Catalytic transformation of cellulose into platform chemicals. Appl Catal B 145:1–9

    Article  CAS  Google Scholar 

  • Yang L, Yan X, Wang Q, Wang Q, Xia H (2015) One-pot catalytic conversion of cellulose into polyols with Pt/CNTs catalysts. Carbohydr Res 404:87–92

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang W, Yang F, Brown DE, Ren Y, Lee S, Zeng D, Gao Q, Zhang X (2016) Versatile nickel–tungsten bimetallics/carbon nanofiber catalysts for direct conversion of cellulose to ethylene glycol. Green Chem 18:3949–3955

    Article  CAS  Google Scholar 

  • Zada B, Chen M, Chen C, Yan L, Xu Q, Li W, Guo Q, Fu Y (2017) Recent advances in catalytic production of sugar alcohols and their applications. Sci China Chem 60:853–869

    Article  CAS  Google Scholar 

  • Zhang Y, Wang A, Zhang T (2010) A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol. Chem Commun 46:862–864

    Article  CAS  Google Scholar 

  • Zhang K, Wu S, Yang H, Yin H, Li G (2016) Catalytic conversion of cellulose for efficient ethylene glycol production and insights into the reaction pathways. RSC Adv 6:77499–77506

    Article  CAS  Google Scholar 

  • Zhang B, Hao J, Sha Y, Zhou H, Yang K, Song Y, Ban Y, He R, Liu Q (2018) Utilization of lignite derivatives to construct Zr-based catalysts for the conversion of biomass-derived ethyl levulinate. Fuel 217:122–130

    Article  CAS  Google Scholar 

  • Zhao G, Zheng M, Wang A, Zhang T (2010) Catalytic conversion of cellulose to ethylene glycol over tungsten phosphide catalysts. Chin J Catal 31:928–932

    Article  CAS  Google Scholar 

  • Zhao X, Wang J, Chen C, Huang Y, Wang A, Zhang T (2014) Graphene oxide for cellulose hydrolysis: how it works as a highly active catalyst? Chem Commun 50:3439–3442

    Article  CAS  Google Scholar 

  • Zheng MY, Wang AQ, Ji N, Pang JF, Wang XD, Zhang T (2010) Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol. ChemSusChem 3:63–66

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Pang J, Sun R, Wang A, Zhang T (2017) Selectivity control for cellulose to diols: dancing on eggs. ACS Catalysis 7:1939–1954

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Project “AIProcMat@N2020 - Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020”, with the reference NORTE-01-0145-FEDER-000006, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); Associate Laboratory LSRE-LCM - UID/EQU/50020/2019 - funded by national funds through FCT/MCTES (PIDDAC); project “UniRCell” with the reference POCI-01-0145-FEDER-016422. The authors are indebted to Dr. Carlos M. Sá (CEMUP) for assistance with the XPS analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lucília Sousa Ribeiro or Natalia Rey-Raap.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, L.S., Rey-Raap, N., Figueiredo, J.L. et al. Glucose-based carbon materials as supports for the efficient catalytic transformation of cellulose directly to ethylene glycol. Cellulose 26, 7337–7353 (2019). https://doi.org/10.1007/s10570-019-02583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02583-x

Keywords

Navigation