Skip to main content
Log in

Impact of Metal Ions on Catalytic Kinetics, Stability, and Reactivation of Purified Tannase from Aspergillus niger

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This study explores the purification and impact of metal ions on Aspergillus niger tannase, a metalloenzyme. Gel permeation chromatography achieved a 22.03-fold purification, yielding a specific activity of 106 U/mg. The enzyme, confirmed as a homodimer (100 kDa native, 50 kDa SDS PAGE), exhibited enhanced activity in the presence of calcium ions, reaching 163.46 U/mg, a 1.42-fold increase. UV absorption with 6 µM Ca ions indicated structural stability. Kinetic studies revealed a sigmoidal Michaelis–Menten graph with calcium ions, suggesting allosteric effects. The Lineweaver–Burk plot showed increased Km (14.04 to 36.39 mM) with mercuric ions, indicating competitive inhibition, while Vmax remained stable. Reactivation studies with DTT and different metal ions showed maximum reactivation with Hg (88.8%) and Ag (81.4%), implicating binding with cysteine residue in inactivation. EDTA-induced reactivation displayed maximum reactivation with Cu ions (67.6%) and minimum with Hg (22.5%), indicating Cu ions form complexes with amino acid groups. In contrast, Hg forms a coordination sphere with the thiol group of a cysteine residue. This comprehensive examination provides insights for optimizing tannase-based processes in various industries and expanding its biotechnological applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

U :

Units

Mg:

Milligrams

kDa :

Kilodalton

SDS :

Sodium dodecyl sulfate

PAGE :

Polyacrylamide gel electrophoresis

UV :

Ultraviolet

Km :

Michaelis constant

Vmax :

Maximum velocity

mM :

Millimolar

µM :

Micromolar

EDTA :

Ethylenediamine tetraacetic acid

EGTA :

Ethylene glycol-bis (β-aminoethyl ether)-N, N, N′, N′-tetraacetic acid

DTT :

Dithiothreitol

Ca :

Calcium

Hg :

Mercury

Cu :

Copper

Cys :

Cysteine

3-D :

Three-dimensional

TEMED :

N, N, N’, N’- Tetramethylethylenediamine

BSA :

Bovine serum albumin

NCCS :

National Centre for Cell Science

NCBI :

National Center for Biotechnology Information

SmF :

Submerged fermentation

rpm :

Revolutions per minute

NaCl :

Sodium chloride

µl :

Microliter

M :

Molar

nm :

Nanometre

DEAE :

Diethyl aminoethyl

References

  1. Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol. https://doi.org/10.1016/S0065-2164(08)70463-5

    Article  PubMed  Google Scholar 

  2. Zhang YN, Yin JF, Chen JX, Wang QZ, Jiang YW, Xu YQ (2016) Improving the sweet aftertaste of green tea infusion with tannase. Food Chem. https://doi.org/10.1016/j.foodchem.2015.07.046

    Article  PubMed  Google Scholar 

  3. Ong C, Annuar MSM (2021) Cross-linked tannase-carbon nanotubes composite in elevating antioxidative potential of green tea extract. J Food Biochem. https://doi.org/10.1111/jfbc.13924

    Article  PubMed  Google Scholar 

  4. Kundu D, Karmakar S, Banerjee R (2022) Simultaneous debittering and clarification of enzyme mediated mixed citrus juice production. Appl Food Res. https://doi.org/10.1016/j.afres.2021.100031

    Article  Google Scholar 

  5. Balakrishnan A, Kanchinadham SBK, Kalyanaraman C (2021) Studies on the effect of bacterial tannase supplementation to biodegradation of tannins in tannery wastewater. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.1c02987

    Article  Google Scholar 

  6. Sutaoney P, Akhand A, Meshram M, Sinha S, Joshi V, Shahadat M (2024) Tannase production using green biotechnology and its applications: a review. Biochem Eng J. https://doi.org/10.1016/j.bej.2023.109163

    Article  Google Scholar 

  7. Ren B, Wu M, Wang Q, Peng X, Wen H, McKinstry WJ, Chen Q (2013) Crystal structure of tannase from Lactobacillus plantarum. J Mol Biol. https://doi.org/10.1016/j.jmb.2013.04.032

    Article  PubMed  Google Scholar 

  8. Dong L, McKinstry WJ, Pan L, Newman J, Ren B (2021) Crystal structure of fungal tannase from Aspergillus niger. Acta Crystallogr D: Struct Biol. https://doi.org/10.1107/S2059798320016484

    Article  PubMed  Google Scholar 

  9. Mahmudov KT, Gurbanov AV, Guseinov FI, Guedes da Silva MFC (2019) Noncovalent interactions in metal complex catalysis. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2019.02.011

    Article  Google Scholar 

  10. Neel AJ, Hilton MJ, Sigman MS, Toste FD (2017) Exploiting non-covalent π interactions for catalyst design. Nature. https://doi.org/10.1038/nature21701

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhao Q, Chen C, Wen J, Dong XQ, Zhang X (2020) Noncovalent interaction-assisted ferrocenyl phosphine ligands in asymmetric catalysis. Acc Chem Res. https://doi.org/10.1021/acs.accounts.0c00347

    Article  PubMed  Google Scholar 

  12. Gurbanov AV, Mahmudov KT, Kopylovich MN, Guedes da Silva FM, Sutradhar M, Guseinov FI, Zubkov FI, Maharramov AM, Pombeiro AJL (2017) Molecular switching through cooperative ionic interactions and charge assisted hydrogen bonding. Dyes Pigm. https://doi.org/10.1016/j.dyepig.2016.11.029

    Article  Google Scholar 

  13. Bulut H, Valjakka J, Yuksel B, Yilmazer B, Turunen O, Binay B (2020) Effect of metal ions on the activity of ten nad-dependent formate dehydrogenases. Protein J. https://doi.org/10.1007/s10930-020-09924-x

    Article  PubMed  Google Scholar 

  14. Prejano M, Alberto ME, Russo N, Toscano M, Marino T (2020) The effects of the metal ion substitution into the active site of metalloenzymes: a theoretical insight on some selected cases. Catalysts. https://doi.org/10.3390/catal10091038

    Article  Google Scholar 

  15. Kluska K, Adamczyk J, Krezel A (2018) Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2018.04.009

    Article  Google Scholar 

  16. Garza-Lombo C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R (2018) Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure: redox signaling and oxidative stress. Antioxid Redox Signal. https://doi.org/10.1089/ars.2017.7272

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lu S, Shen Q, Zhang J (2019) Allosteric methods and their applications: facilitating the discovery of allosteric drugs and the investigation of allosteric mechanisms. Acc Chem Res. https://doi.org/10.1021/acs.accounts.8b00570

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mehrabi P, Di PC, Kim TH, Sljoka A, Taverner K, Ing C, Kruglyak N, Pomes R, Pai EF, Prosser RS (2019) Substrate-based allosteric regulation of a homodimeric enzyme. J Am Chem Soc. https://doi.org/10.1021/jacs.9b03703

    Article  PubMed  Google Scholar 

  19. Bajpai B, Patil S (2008) A new approach to microbial production of gallic acid. Braz J Microbiol. https://doi.org/10.1590/s1517-83822008000400021

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sharma S, Bhat TK, Dawra RK (2000) A spectrophotometric method for assay of tannase using rhodanine. Anal Biochem. https://doi.org/10.1006/abio.1999.4405

    Article  PubMed  Google Scholar 

  21. Scopes RK (1995) Strategies for protein purification. Curr Protoc Protein Sci. https://doi.org/10.1002/0471140864.ps0102s00

    Article  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. https://doi.org/10.1006/abio.1976.9999

    Article  PubMed  Google Scholar 

  23. Cummins PM, Rochfort KD, O’Connor BF (2017) Ion-exchange chromatography: basic principles and application. In: Walls D, Loughran S (eds) Protein chromatography. Methods in molecular biology, vol 1485. Humana Press, New York. https://doi.org/10.1007/978-1-4939-6412-3_11

  24. Loughran ST, Milne JJ (2023) Protein chromatography. Methods in molecular biology, 3rd edn. Springer, US. https://doi.org/10.1007/978-1-0716-3362-5

  25. Jan S, Khan S, Rabbani M, Khurshid H, Ibrahim M, Adil M, Ilyas M (2017) Comparison of electrophoretic protein profiles of Brassica rapa sub-species brown sarson through SDS-PAGE method. Genetika. https://doi.org/10.2298/gensr1701095j

  26. Kumar M, Mehra R, Yogi R, Singh N, Salar RK, Saxena G, Rustagi S (2023) A novel tannase from Klebsiella pneumoniae KP715242 reduces haze and improves the quality of fruit juice and beverages through detannification. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2023.1173611

    Article  Google Scholar 

  27. Ahmed AI, Abou-Taleb KAA, Abd-Elhalim BT (2023) Characterization and application of tannase and gallic acid produced by co-fungi of Aspergillus niger and Trichoderma viride utilizing agro-residues substrates. Sci Rep. https://doi.org/10.1038/s41598-023-43955-5

    Article  PubMed  PubMed Central  Google Scholar 

  28. Farag AM, Hassan SW, El-Says AM, Ghanem KM (2018) Purification, characterization and application of tannase enzyme isolated from marine Aspergillus nomius GWA5. J Pure Appl Microbiol. https://doi.org/10.22207/jpam.12.4.30

  29. Selwal KK, Selwal MK (2023) Purification and characterization of extracellular tannase from Aspergillus fumigatus MA using Syzigium cumini leaves under solid state fermentation. Prep Biochem Biotechnol. https://doi.org/10.1080/10826068.2023.2279106

    Article  PubMed  Google Scholar 

  30. Zhong X, Peng L, Zheng S, Sun Z, Ren Y, Dong M, Xu A (2004) Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expr Purif. https://doi.org/10.1016/j.pep.2004.04.016

    Article  PubMed  Google Scholar 

  31. Bagga J, Pramanik SK, Pandey V (2015) Production and purification of tannase from Aspergillus aculeatus using plant derived raw tannin. Int J Eng Sci Technol. https://doi.org/10.17950/ijset/v4s2/205

  32. Mahendran B, Raman N, Kim DJ (2006) Purification and characterization of tannase from Paecilomyces variotii: hydrolysis of tannic acid using immobilized tannase. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-005-0082-y

    Article  PubMed  Google Scholar 

  33. Rk G, Krishnamurthy M, Neelamegam R, Shyu DJH, Muthukalingan K, Nagarajan K (2019) Purification, structural characterization and biotechnological potential of tannase enzyme produced by Enterobacter cloacae strain 41. Process Biochem. https://doi.org/10.1016/j.procbio.2018.10.013

    Article  Google Scholar 

  34. Al-Mraai STY, Al-Fekaiki DF, Abd Al-Manhel AJ (2019) Purification and characterization of tannase from the local isolate of Aspergillus niger. J Appl Biol Biotechnol. https://doi.org/10.7324/jabb.2019.70106

    Article  Google Scholar 

  35. Abdal A K, Al-jubori SS, Muslim SN (2020) Screening, extraction and purification for tannase produced from Iraqi Klebsiella pneumonia isolates and molecular detection of tanA gene. EurAsian J Biosci. https://doi.org/10.36295/asro.2020.2369

  36. Lekshmi R, Arif NS, Thirumalai VP, Kaleeswaran B (2021) A comprehensive review on tannase: Microbes associated production of tannase exploiting tannin rich agro-industrial wastes with special reference to its potential environmental and industrial applications. Environ Res. https://doi.org/10.1016/j.envres.2021.111625

    Article  PubMed  Google Scholar 

  37. Costa AM, Ribeiro WX, Kato E, Monteiro ARG, Peralta RM (2008) Production of tannase by Aspergillus tamarii in submerged cultures. Braz Arch Biol Technol. https://doi.org/10.1590/s1516-89132008000200021

    Article  Google Scholar 

  38. Dimarogona M, Topakas E, Christakopoulos P, Chrysina ED (2020) The crystal structure of a Fusarium oxysporum feruloyl esterase that belongs to the tannase family. FEBS Lett. https://doi.org/10.1002/1873-3468.13776

    Article  PubMed  Google Scholar 

  39. Borah A, Selvaraj S, Murty VR (2023) Production of gallic acid from Swietenia macrophylla using tannase from Bacillus Gottheilii M2S2 in semi-solid state fermentation. Waste Biomass Valorization. https://doi.org/10.1007/s12649-022-02023-1

    Article  Google Scholar 

  40. Guan L, Wang K, Gao Y, Li J, Yan S, Ji N, Ren C, Wang J, Zhou Y, Li B, Lu S (2021) Biochemical and structural characterization of a novel bacterial tannase from Lachnospiraceae bacterium in ruminant gastrointestinal tract. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2021.806788

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kielkopf CL, Bauer W, Urbatsch IL (2020) Methods for measuring the concentrations of proteins. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.top102277

    Article  PubMed  Google Scholar 

  42. Mostafa HS (2022) Potato peels for tannase production from Penicillium commune HS2, a high tannin-tolerant strain, and its optimization using response surface methodology. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-02205-2

    Article  Google Scholar 

  43. Dainese E, Oddi S, Simonetti M, Sabatucci A, Angelucci CB, Ballone A, Dufrusine B, Fezza F, De Fabritiis G, Maccarrone M (2020) The endocannabinoid hydrolase FAAH is an allosteric enzyme. Sci Rep. https://doi.org/10.1038/s41598-020-59120-1

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sun P, Liu Y, Ma T, Ding J (2020) Structure and allosteric regulation of human NAD-dependent isocitrate dehydrogenase. Cell Discov. https://doi.org/10.1038/s41421-020-00220-7

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fan Y, Cross PJ, Jameson GB, Parker EJ (2018) Exploring modular allostery via interchangeable regulatory domains. Proc Natl Acad Sci.https://doi.org/10.1073/pnas.1717621115

  46. Jimenez N, Esteban-Torres M, Mancheno JM, de las RB, Munoz R (2014) Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Appl Environ Microbiol.https://doi.org/10.1128/aem.00324-14

  47. Piscopo M, Notariale R, Tortora F, Lettieri G, Palumbo G, Manna C (2020) Novel insights into mercury effects on hemoglobin and membrane proteins in human erythrocytes. Molecules. https://doi.org/10.3390/molecules25143278

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dutta N, Miraz SM, Khan MU, Karekar SC, Usman M, Khan SM, Amin U, Rebezov M, Shariati MA, Thiruvengadam M (2021) Heterologous expression and biophysical characterization of a mesophilic tannase following manganese nanoparticle immobilization. Colloids Surf B. https://doi.org/10.1016/j.colsurfb.2021.112011

    Article  Google Scholar 

  49. Barton CC (2014) EDTA (ethylenediaminetetraacetic acid). Encyclopedia of toxicology, 3rd edn. Elsevier. https://doi.org/10.1016/b978-0-12-824315-2.00692-8

  50. Arkhypova V, Soldatkin O, Soldatkin A, Dzyadevych S (2023) Electrochemical biosensors based on enzyme inhibition effect. Chem Rec. https://doi.org/10.1002/tcr.202300214

    Article  PubMed  Google Scholar 

  51. Sun S, Xu W, Zhou H, Zhang Y, Zhang J, Li X, Li B, Ma K, Xu J (2021) Efficient purification of selenoprotein thioredoxin reductase 1 by using chelating reagents to protect the affinity resins and rescue the enzyme activities. Process Biochem. https://doi.org/10.1016/j.procbio.2020.11.019

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the Department of Biotechnology, Himachal Pradesh University, Shimla, India, for providing the laboratory and chemical facilities during the study. The authors also gratefully acknowledge ICMR, New Delhi, India for providing the financial assistance as SRF (JRF-2019/ HRD-008, 20546) and necessary facilities for the completion of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duni Chand.

Ethics declarations

Conflict of Interest

The authors declare that they do not have conflicts of interest among themselves.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Examining the impact of various metal ions, including alkali, alkali earth, and transition metals, on the structural attributes of purified tannase sourced from Aspergillus niger.

2. Performing kinetic analyses to understand the mechanisms that activate or inhibit tannase function.

3. Exploring methods to reactivate inhibited tannase by employing metal ion chelators.

4. Suggesting a potential regulatory role of Ca ions and identifying tannase as an allosteric enzyme.

5. Investigating the impact of metal ion inactivation on tannase using EDTA and DTT, highlighting interactions with specific thiol and non-thiol groups within the enzyme.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alka, K., Kaushal, L., Arti et al. Impact of Metal Ions on Catalytic Kinetics, Stability, and Reactivation of Purified Tannase from Aspergillus niger. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04664-4

Keywords

Navigation