Skip to main content
Log in

Synthesis of MIL-68 (Al) Catalyst and Optimization of Green Biodiesel Production from Waste Cooking Oil

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Given the ongoing crisis of depleting fossil fuel reserves and rising demand for biofuels, scientists are increasingly driven to explore more environmentally friendly and sustainable energy options in today’s global landscape. Consequently, the utilization of solid catalysts, specifically Metal–Organic Frameworks (MOFs), in the transesterification process to produce biodiesel emerges as a promising avenue. This marks the innovative adoption of the metal–organic catalyst MIL-68 (Al) in the context of biodiesel production. This study focuses on the generation of green and efficient biodiesel using Waste Cooking Oil (WCO) as the primary raw material which involves a transesterification process utilizing of MIL-68 (Al). Using the Box-Behnken Design (BBD), a well-established method in Response Surface Methodology (RSM), we optimized key variables including catalyst quantity, duration, and temperature in the transesterification process. The optimization study includes parameter ranges: time (3–8 h), temperature (100–150 °C), and catalyst dosage (5–25%).

The catalyst characteristics were investigated through AFM, BET, DLS, SEM, ICP, FTIR, NH3-TPD, TEM, TGA, and XRD analyses. Using a temperature of 145 °C and incorporating a catalyst quantity of 24.18%, a maximum oil conversion efficiency of 98.8% was attained within 7.5 h. Kinetic analysis showed that the experimental behavior followed a pseudo-first-order reaction kinetic model (R2 = 0.9991), and the transesterification reaction demanded an activation energy of Ea = 65.47 kJ/mol. The catalyst demonstrates excellent stability, maintaining consistent performance over four cycles without any noticeable decline. The yield after four cycles of reusability remains high at 92.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The datasets utilized and/or examined in the current study are available from the corresponding author upon reasonable request.

References  

  1. Ghanadi M, Kah M, Kookana RS, Padhye LP (2023) Formation of disinfection by-products from microplastics, tire wear particles, and other polymer-based materials. Water Res 230:119528. https://doi.org/10.1016/j.watres.2022.119528

    Article  CAS  PubMed  Google Scholar 

  2. Mautschke HH, Drache F, Senkovska I, Kaskel S, i Xamena FL (2018) Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks. Catal Sci Technol 8(14):3610–3616. https://doi.org/10.1039/C8CY00742J

    Article  CAS  Google Scholar 

  3. Varol P, Çakan A, Kiren B, Ayas N (2021) Microwave-assisted catalytic transesterification of soybean oil using KOH/γ-Al2O3. Biomass Convers Biorefinery 1–13. https://doi.org/10.1007/s13399-020-01253-4

  4. Mandari V, Devarai SK (2022) Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: a Critical Review. BioEnergy Res 15(2):935–961. https://doi.org/10.1007/s12155-021-10333-w

    Article  CAS  PubMed  Google Scholar 

  5. Dibazar AS, Aliasghar A, Behzadnezhad A, Shakiba A, Pazoki M (2023) Energy cycle assessment of bioethanol production from sugarcane bagasse by life cycle approach using the fermentation conversion process. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-04288-5

    Article  Google Scholar 

  6. Shakiba A, Aliasghar A, Moazeni K, Pazoki M (2023) Hydrothermal Carbonization of Sewage Sludge with Sawdust and Corn Stalk: Optimization of Process Parameters and Characterization of Hydrochar. BioEnergy Res. https://doi.org/10.1007/s12155-022-10552-9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Venkataramana SH, Shivalingaiah K, Davanageri MB, Selvan CP, Lakshmikanthan A, Chandrashekarappa MPG, Razak A, Anand PB, Linul, E (2022) Niger seed oil-based biodiesel production using transesterification process: experimental investigation and optimization for higher biodiesel yield using box–behnken design and artificial intelligence tools. Appl Sci 12(12):5987. https://doi.org/10.3390/app12125987

  8. Yücesu H, Topgül T, Okur M (2006) Effect of ethanol–gasoline blends on engine performance and exhaust emissions in different compression ratios. Appl Therm Eng - APPL THERM ENG 26:2272–2278. https://doi.org/10.1016/j.applthermaleng.2006.03.006

    Article  CAS  Google Scholar 

  9. Ahmed M, Abdullah A, Patle D, Shahadat M, Ahmad Z, Athar M, Aslam, M, Vo D-V (2021) Feedstocks, catalysts, process variables and techniques for biodiesel production by one‑pot extraction‑transesterifcation: a review. Environ Chem Lett 20:335–378. https://doi.org/10.1007/s10311-021-01358-w

  10. Karmakar B, Hossain A, Jha B, Sagar R, Halder G (2021) Factorial optimization of biodiesel synthesis from castor-karanja oil blend with methanol-isopropanol mixture through acid/base doped Delonix regia heterogeneous catalysis. Fuel 285:119197. https://doi.org/10.1016/j.fuel.2020.119197

    Article  CAS  Google Scholar 

  11. Zhang Q, Yue C, Ao L, Lei D, Ling D, Yang D, Zhang Y (2021) Facile one-pot synthesis of Cu-BTC metal-organic frameworks supported Keggin phosphomolybdic acid for esterification reactions. Energy Sources Part A: Recover Utilization Environ Eff 43:3320–3331. https://doi.org/10.1080/15567036.2019.1651794

    Article  CAS  Google Scholar 

  12. Danane F, Bessah R, Alloune R, Tebouche L, Madjene F, Kheirani AY, Bouabibsa R (2022) Experimental optimization of waste cooking oil ethanolysis for biodiesel production using Response Surface Methodology (RSM). Sci Tech Energ Transit 77:14. https://doi.org/10.2516/stet/2022014

    Article  CAS  Google Scholar 

  13. Wan H, Chen C, Wu Z, Que Y, Feng Y, Wang W, Wang L, Guan G, Liu X (2014) Cover picture: encapsulation of heteropolyanion-based ionic liquid within the metal-organic framework MIL-100(Fe) for biodiesel production (ChemCatChem 3/2015). ChemCatChem 7. https://doi.org/10.1002/cctc.201402800

  14. Hosseini SA (2022) Nanocatalysts for biodiesel production. Arab J Chem 15(10):104152. https://doi.org/10.1016/j.arabjc.2022.104152

    Article  CAS  Google Scholar 

  15. Kalita P, Basumatary B, Saikia P, Das B, Basumatary S (2022) Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification. Energy Nexus 6:100087. https://doi.org/10.1016/j.nexus.2022.100087

    Article  CAS  Google Scholar 

  16. Marso M, Kalpage S, Udugala-Ganehenege M (2020) Application of chromium and cobalt terephthalate metal organic frameworks as catalysts for the production of biodiesel from calophyllum inophyllum oil in high Yield under mild conditions. J Inorg Organomet Polym Mater 30:1243–1265. https://doi.org/10.1007/s10904-019-01251-8

    Article  CAS  Google Scholar 

  17. Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87(1):38–46. https://doi.org/10.1016/j.apenergy.2009.06.016

    Article  CAS  Google Scholar 

  18. Zhang Q, Yang T, Liu X, Yue C, Ao L, Deng T, Zhang Y (2019) Heteropoly acid-encapsulated metal–organic framework as a stable and highly efficient nanocatalyst for esterification reaction. RSC Adv 9(29):16357–16365. https://doi.org/10.1039/C9RA03209F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suzihaque MUH, Alwi H, Ibrahim U, Abdullah S, Haron N (2022) Biodiesel production from waste cooking oil: A brief review. Mater Today: Proc 63:S490–S495. https://doi.org/10.1016/j.matpr.2022.04.527

    Article  CAS  Google Scholar 

  20. Hazrat MA, Rasul MG, Khan MMK, Ashwath N, Fattah IMR, Ong HC, Mahlia TMI (2022) Biodiesel production from transesterification of Australian Brassica napus L. oil: optimisation and reaction kinetic model development. Environ Dev Sustain. https://doi.org/10.1007/s10668-022-02506-0

    Article  Google Scholar 

  21. Etim AO, Musonge P, Eloka-Eboka AC (2022) Process optimization of bio-alkaline catalysed transesterification of flax seed oil methyl ester. Sci Afr 16:e01275. https://doi.org/10.1016/j.sciaf.2022.e01275

    Article  CAS  Google Scholar 

  22. Miladinović MR, Zdujić MV, Veljović DN, Krstić JB, Banković-Ilić IB, Veljković VB, Stamenković OS (2020) Valorization of walnut shell ash as a catalyst for biodiesel production. Renew Energy 147:1033–1043. https://doi.org/10.1016/j.renene.2019.09.056

    Article  CAS  Google Scholar 

  23. Lima AC, Hachemane K, Ribeiro A, Queiroz A, Gomes M, Brito P (2022) Evaluation and kinetic study of alkaline ionic liquid for biodiesel production through transesterification of sunflower oil. Fuel 324:124586. https://doi.org/10.1016/j.fuel.2022.124586

    Article  CAS  Google Scholar 

  24. Cirujano FG, Corma A, Xamena FXLI (2015) Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest. Catal Today 257:213–220. https://doi.org/10.1016/j.cattod.2014.08.015

    Article  CAS  Google Scholar 

  25. Zhou K, Chaemchuen S (2017) Metal-organic framework as catalyst in esterification of oleic acid for biodiesel production. Int J Environ Sci Dev 8:251–254. https://doi.org/10.18178/ijesd.2017.8.4.957

    Article  CAS  Google Scholar 

  26. Farzaneh F, Mortazavi S-S (2016) Zn metal organic framework as a heterogeneous catalyst for the alkylation of toluene with benzyl bromide. React Kinet Mech Catal 120:333–344. https://doi.org/10.1007/s11144-016-1077-7

    Article  CAS  Google Scholar 

  27. Nikseresht A, Daniyali A, Ali-Mohammadi M, Afzalinia A, Mirzaie A (2017) Ultrasound-assisted biodiesel production by a novel composite of Fe(III)-based MOF and phosphotangestic acid as efficient and reusable catalyst. Ultrason Sonochem 37:203–207. https://doi.org/10.1016/j.ultsonch.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  28. Peña-Rodríguez R, Lopez E, Guerrero A, Chiñas L, Hernández-González D, Rivera J (2018) Hydrothermal synthesis of Cobalt (II) 3D Metal-Organic Framework acid catalyst applied in the transesterification process of vegetable oil. Mater Lett 217:117–119. https://doi.org/10.1016/j.matlet.2018.01.052

    Article  CAS  Google Scholar 

  29. Rahmani A, Shabanloo A, Zabihollahi S, Salari M, Leili M, Khazaei M, Alizadeh S, Nematollahi D (2022) Facile fabrication of amino-functionalized MIL-68(Al) metal–organic framework for effective adsorption of arsenate (As(V)). Sci Rep 12(1):11865. https://doi.org/10.1038/s41598-022-16038-0

  30. Tan Y, Sun Z, Meng H, Han Y, Wu J, Xu J, Xu Y, Zhang X (2019) A new MOFs/polymer hybrid membrane: MIL-68(Al)/PVDF, fabrication and application in high-efficient removal of p-nitrophenol and methylene blue. Sep Purif Technol 215. https://doi.org/10.1016/j.seppur.2019.01.008

  31. Wu SC, You X, Yang C, Cheng JH (2017) Adsorption behavior of methyl orange onto an aluminum-based metal organic framework, MIL-68(Al). Water Sci Technol 75(12):2800–2810. https://doi.org/10.2166/wst.2017.154

    Article  CAS  PubMed  Google Scholar 

  32. Wang C, Liu X, Keser Demir N, Chen JP, Li K (2016) Applications of water stable metal–organic frameworks. Chem Soc Rev 45(18):5107–5134. https://doi.org/10.1039/C6CS00362A

    Article  CAS  PubMed  Google Scholar 

  33. Zhao X, Zheng M, Xinli G, Zhang J, Wang E, Gao Z (2021) The application of MOFs-based materials for antibacterials adsorption. Coord Chem Rev 440:213970. https://doi.org/10.1016/j.ccr.2021.213970

    Article  CAS  Google Scholar 

  34. Georgiadis AG, Charisiou N, Yentekakis IV, Goula MA (2020) Hydrogen Sulfide (H2S) Removal via MOFs. Materials 13(16):3640 (https://www.mdpi.com/1996-1944/13/16/3640)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shah MS, Tsapatsis M, Siepmann JI (2017) Hydrogen sulfide capture: From absorption in polar liquids to oxide, zeolite, and metal-organic framework adsorbents and membranes. Chem Rev 117(14):9755–9803. https://doi.org/10.1021/acs.chemrev.7b00095

    Article  CAS  PubMed  Google Scholar 

  36. Bayat A, Baghdadi M, Bidhendi GN (2018) Tailored magnetic nano-alumina as an efficient catalyst for transesterification of waste cooking oil: Optimization of biodiesel production using response surface methodology. Energy Convers Manage 177:395–405. https://doi.org/10.1016/j.enconman.2018.09.086

    Article  CAS  Google Scholar 

  37. Dehghan A, Aliasghar A, Rahmati R, Delnavaz M, Khoshvaght H (2024) Green synthesis of ZnO/αFe2O3 Nano-photocatalyst for efficient removal of carbamate pesticides in wastewater: Optimization, mineralization, and financial analysis. Korean J Chem Eng 41(1):249–269. https://doi.org/10.1007/s11814-024-00073-w

    Article  CAS  Google Scholar 

  38. Moazeni K, Mirzaei M, Baghdadi M, Torabian A (2023) Sequential treatment of textile industry wastewater using electrocoagulation and photo electro-fenton processes. Water Air Soil Pollut 234(7):413. https://doi.org/10.1007/s11270-023-06406-5

    Article  CAS  Google Scholar 

  39. Farooq M, Ramli A, Naeem A (2015) Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renew Energy 76:362–368. https://doi.org/10.1016/j.renene.2014.11.042

    Article  CAS  Google Scholar 

  40. Rahmani E, Mohammad R (2017) Al-based MIL-53 Metal Organic Framework (MOF) as the new catalyst for friedel-crafts alkylation of benzene. Ind Eng Chem Res 57:169–178. https://doi.org/10.1021/acs.iecr.7b04206

    Article  CAS  Google Scholar 

  41. Baghdadi M, Ghaffari E, Aminzadeh B (2016) Removal of carbamazepine from municipal wastewater effluent using optimally synthesized magnetic activated carbon: Adsorption and sedimentation kinetic studies. J Environ Chem Eng 4:3309–3321. https://doi.org/10.1016/j.jece.2016.06.034

    Article  CAS  Google Scholar 

  42. Liu J, Zhang F, Zou X, Zhou S, Li L, Sun FX, Qiu S (2012) Facile synthesis of MIL-68(In) films with controllable morphology. Eur J Inorg Chem 2012. https://doi.org/10.1002/ejic.201200642

  43. Goldman M, Huang Y (2018) Conformational analysis of 1, 2-dichloroethane adsorbed in metal-organic frameworks. Vib Spectrosc 95:68–74. https://doi.org/10.1016/j.vibspec.2018.02.002

  44. Latchubugata CS, Kondapaneni RV, Patluri K, Virendra U, Vedantam S (2018) Kinetics and optimization studies using response surface methodology in biodiesel production using heterogeneous Catalyst. Chem Eng Res Des 135:129–139. https://doi.org/10.1016/j.cherd.2018.05.022

    Article  CAS  Google Scholar 

  45. Ong LK, Kurniawan A, Suwandi AC, Lin CX, Zhao XS, Ismadji S (2013) Transesterification of leather tanning waste to biodiesel at supercritical condition: Kinetics and thermodynamics studies. J Supercrit Fluids 75:11–20. https://doi.org/10.1016/j.supflu.2012.12.018

    Article  CAS  Google Scholar 

  46. Rathore V, Madras G (2007) Synthesis of biodiesel from edible and non-edible oils in supercritical alcohols and enzymatic synthesis in supercritical carbon dioxide. Fuel 86:2650–2659. https://doi.org/10.1016/j.fuel.2007.03.014

    Article  CAS  Google Scholar 

  47. Maeda H, Hagiwara S, Nabetani H, Sagara Y, Surawidjaja T, Tambunan A, Abdullah K (2008) Biodiesel fuels from palm oil via the non-catalytic transesterification in a bubble column reactor at atmospheric pressure: A kinetic study. Renew 33:1629–1636. https://doi.org/10.1016/j.renene.2007.08.011

  48. He H, Sun S, Zhu S (2007) Transesterification kinetics of soybean oil for production of biodiesel in supercritical methanol. JAOCS, J Am Oil Chem Soc 84:399–404. https://doi.org/10.1007/s11746-007-1042-8

    Article  CAS  Google Scholar 

  49. Ridwan I, Katsuragawa N, Tamura K (2020) Process optimization, reaction kinetics, and thermodynamics studies of water addition on supercritical methyl acetate for continuous biodiesel production. J Supercrit Fluids 166:105038. https://doi.org/10.1016/j.supflu.2020.105038

    Article  CAS  Google Scholar 

  50. Barekati-Goudarzi M, Muley P, Stepanov GV, Nde DB, Boldor D (2017) Continuous microwave-assisted in-situ transesterification of lipids in seeds of invasive Chinese tallow trees (Triadica sebifera L.): Kinetic and thermodynamic studies. Biomass Bioenerg 107:353–360. https://doi.org/10.1016/j.biombioe.2017.09.006

    Article  CAS  Google Scholar 

  51. Jacobson K, Gopinath R, Meher LC, Dalai A (2008) Solid acid catalyzed biodiesel production from waste cooking oil. Appl Catal B: Environ 85:86–91. https://doi.org/10.1016/j.apcatb.2008.07.005

    Article  CAS  Google Scholar 

  52. Qu S, Chen C, Guo M, Jiang W, Lu J, Yi W, Ding J (2021) Microwave-assisted in-situ transesterification of Spirulina platensis to biodiesel using PEG/MgO/ZSM-5 magnetic catalyst. J Clean Prod 311:127490. https://doi.org/10.1016/j.jclepro.2021.127490

    Article  CAS  Google Scholar 

  53. Qu S, Chen C, Guo M, Lu J, Yi W, Ding J, Miao Z (2020) Synthesis of MgO/ZSM-5 catalyst and optimization of process parameters for clean production of biodiesel from Spirulina platensis. J Clean Prod 276:123382. https://doi.org/10.1016/j.jclepro.2020.123382

    Article  CAS  Google Scholar 

  54. Chen C, Qu S, Guo M, Lu J, Yi W, Liu R, Ding J (2021) Waste limescale derived recyclable catalyst and soybean dregs oil for biodiesel production: Analysis and optimization. Process Saf Environ Prot 149:465–475. https://doi.org/10.1016/j.psep.2020.11.022

    Article  CAS  Google Scholar 

  55. Guo M, Jiang W, Chen C, Qu S, Lu J, Yi W, Ding J (2021) Process optimization of biodiesel production from waste cooking oil by esterification of free fatty acids using La3+/ZnO-TiO2 photocatalyst. Energy Convers Manage 229:113745. https://doi.org/10.1016/j.enconman.2020.113745

    Article  CAS  Google Scholar 

  56. Seaf Elnasr TA, Al-Enezi AT, Hussein MF, Bielal H, Alhumaimess MS, El-Ossaily YA, Hassan, HM, AlNahwa LH, Aldawsari AM, Alsohaimi IH (2024) Sustainable biodiesel production from waste olive oil: Utilizing olive pulp-derived catalysts for environmental and economic benefits. Sustain Chem Pharm 37:101426. https://doi.org/10.1016/j.scp.2024.101426

  57. Mohammadi N, Ostovar N, Niromand R, Absalan F (2023) Advancing biodiesel production from pyrus glabra seed oil: Kinetic study and RSM optimization via microwave-assisted transesterification with biocompatible hydroxyapatite catalyst. Sustain Chem Pharm 36:101272. https://doi.org/10.1016/j.scp.2023.101272

    Article  CAS  Google Scholar 

  58. Rahman WU, Khan RIA, Ahmad S, Yahya SM, Khan ZA, Rokhum SL, Halder G (2023) Valorizing waste palm oil towards biodiesel production using calcareous eggshell based heterogeneous catalyst. Bioresour Technol Rep 23:101584. https://doi.org/10.1016/j.biteb.2023.101584

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We extend our sincere gratitude for the gracious support and collaboration extended by Tehran University, allowing us the privilege of utilizing their esteemed facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Aliasghar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabzi, M., Baghdadi, M., Aliasghar, A. et al. Synthesis of MIL-68 (Al) Catalyst and Optimization of Green Biodiesel Production from Waste Cooking Oil. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04659-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04659-1

Keywords

Navigation