Skip to main content
Log in

Green Synthesis of ZnO/αFe2O3 Nano-photocatalyst for Efficient Removal of Carbamate Pesticides in Wastewater: Optimization, Mineralization, and Financial Analysis

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

As emerging organic agricultural pollutants, carbamate pesticides can react with other contaminants in aquatic environments to produce new toxic compounds threatening aquatic life and ecosystems. This study introduces a novel, nonhazardous, and greener method to synthesize a cross-linked ZnO/αFe2O3 nano-photocatalyst to treat carbamate pesticides via ball milling. ZnO/αFe2O3 was characterized through various methods, including XRD, EDX, XRF, DRS, BET, FE-SEM, PL, and FTIR analyses. Using the Response Surface Methodology (RSM), the ability of ZnO/αFe2O3 nano-photocatalyst to remove carbamate from synthesized wastewater was assessed. The BET result indicated a decrease in the diameter of the nanocomposite size after the synthesis. At the same time, the BET surface area and total pores increased from 4.9871 m2.g−1 and 0.02806 cm3.g−1 to 6.8524 m2.g−1 and 0.069497 cm3.g−1, respectively. In addition, the band-gap energy decreased from 3.179 eV for ZnO to 1.907 eV for ZnO/αFe2O3 and eventually reached 1.878 eV for heat-treated ZnO/αFe2O3 nanocomposite. The catalyst concentrations used in the experiments were 0.5, 1, and 1.5 g/L. The solution pH was set to 5, 8, and 11, and three different residence times of 1, 2, and 3 h were used. The model’s results indicated a strong agreement between the experimental and predicted data (R2 = 0.99). When the nanocomposite’s concentration, pH, and retention time were set at 1 g/L ZnO/αFe2O3, 8.51, and 3 h respectively, the optimized conditions predicted a removal efficiency of 89%. In addition, the cost of COD removal was reduced by 50% using ball milling and heat-treatment synthesis. The photocatalyst’s reusability was tested in three stages, and the outcomes demonstrated its stability throughout these three stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of Data and Materials

If reasonable requests are made, the corresponding author will provide the datasets used and/or analyzed during this study.

References

  1. A. Sigouin, M. Bélisle, D. Garant, F. Pelletier, Agricultural pesticides and ectoparasites: potential combined effects on the physiology of a declining aerial insectivore. Conserv Physiol. (2021). https://doi.org/10.1093/conphys/coab025

    Article  PubMed  PubMed Central  Google Scholar 

  2. S. Vigneshwaran, P. Sirajudheen, P. karthikeyan, C.P. Nabeena, S. Meenakshi, Remediation of persistent organic pesticides from wastewater matrices—present and future conceptions BT, in Pollution control technologies: current status and future prospects. ed. by S.P. Singh, K. Rathinam, T. Gupta, A.K. Agarwal (Springer Singapore, Singapore, 2021), pp.7–37. https://doi.org/10.1007/978-981-16-0858-2_2

    Chapter  Google Scholar 

  3. D.M. Tomašević, A.S. Petrović, Photochemical processes for removal of carbamate pesticides from water. Adv. Technol. 8, 72–81 (2019)

    Article  Google Scholar 

  4. P. Bhatt, X. Zhou, Y. Huang, W. Zhang, S. Chen, Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. J. Hazard. Mater. 411, 125026 (2021). https://doi.org/10.1016/j.jhazmat.2020.125026

    Article  CAS  PubMed  Google Scholar 

  5. J. Martín-Reina, J.A. Duarte, L. Cerrillos, J.D. Bautista-Palomas, I.M. Moreno-Navarro, Insecticide reproductive toxicity profile: organophosphate, carbamate and pyrethroids. J. Toxins. 4, 1–7 (2017)

    Google Scholar 

  6. A.S. Dibazar, A. Aliasghar, A. Behzadnezhad, A. Shakiba, M. Pazoki, Energy cycle assessment of bioethanol production from sugarcane bagasse by life cycle approach using the fermentation conversion process. Biomass. Convers. Biorefin. (2023). https://doi.org/10.1007/S13399-023-04288-5

    Article  Google Scholar 

  7. N.S. Sulaiman, K. Rovina, V.M. Joseph, Classification, extraction and current analytical approaches for detection of pesticides in various food products. J. Consum. Protect. Food Saf. 14, 209–221 (2019). https://doi.org/10.1007/s00003-019-01242-4

    Article  Google Scholar 

  8. N.M. El-Shafai, M.E. El-Khouly, M. El-Kemary, M.S. Ramadan, A.S. Derbalah, M.S. Masoud, Fabrication and characterization of graphene oxide–titanium dioxide nanocomposite for degradation of some toxic insecticides. J. Ind. Eng. Chem. 69, 315–323 (2019). https://doi.org/10.1016/j.jiec.2018.09.045

    Article  CAS  Google Scholar 

  9. X. Fadic, F. Placencia, A.M. Domínguez, F. Cereceda-Balic, Tradescantia as a biomonitor for pesticide genotoxicity evaluation of iprodione, carbaryl, dimethoate and 4,4′-DDE. Sci. Total. Environ. 575, 146–151 (2017). https://doi.org/10.1016/j.scitotenv.2016.09.198

    Article  CAS  PubMed  ADS  Google Scholar 

  10. S. Mishra, S. Pang, W. Zhang, Z. Lin, P. Bhatt, S. Chen, Insights into the microbial degradation and biochemical mechanisms of carbamates. Chemosphere 279, 130500 (2021). https://doi.org/10.1016/j.chemosphere.2021.130500

    Article  CAS  PubMed  Google Scholar 

  11. I.A. Saleh, N. Zouari, M.A. Al-Ghouti, Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches. Environ. Technol. Innov. 19, 101026 (2020). https://doi.org/10.1016/j.eti.2020.101026

    Article  Google Scholar 

  12. B. Porkar, P.A. Atmianlu, M. Mahdavi, M. Baghdadi, H. Farimaniraad, M.A. Abdoli, Chemical modification of polystyrene foam using functionalized chitosan with dithiocarbamate as an adsorbent for mercury removal from aqueous solutions. Korean J. Chem. Eng. 40, 892–902 (2023). https://doi.org/10.1007/S11814-023-1387-1

    Article  CAS  Google Scholar 

  13. G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 17, 145–155 (2019)

    Article  CAS  Google Scholar 

  14. S. Sheikhi, R. Dehghanzadeh, H. Aslani, Advanced oxidation processes for chlorpyrifos removal from aqueous solution: a systematic review. J. Environ. Health Sci. Eng. 19, 1249–1262 (2021). https://doi.org/10.1007/s40201-021-00674-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K. Moazeni, M. Mehrdad, M. Baghdadi, A. Torabian, Sequential treatment of textile industry wastewater using electrocoagulation and photo electro-Fenton processes. Water Air Soil Pollut. (2023). https://doi.org/10.1007/S11270-023-06406-5

    Article  Google Scholar 

  16. M. Brienza, I. Katsoyiannis, Sulfate radical technologies as tertiary treatment for the removal of emerging contaminants from wastewater. Sustainability. 9, 1604 (2017). https://doi.org/10.3390/su9091604

    Article  CAS  Google Scholar 

  17. H. Dong, L. Xu, Y. Mao, Y. Wang, S. Duan, J. Lian, J. Li, J. Yu, Z. Qiang, Effective abatement of 29 pesticides in full-scale advanced treatment processes of drinking water: From concentration to human exposure risk. J. Hazard. Mater. 403, 123986 (2021). https://doi.org/10.1016/j.jhazmat.2020.123986

    Article  CAS  PubMed  Google Scholar 

  18. M. Malakootian, A. Shahesmaeili, M. Faraji, H. Amiri, S. Silva-Martinez, Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: a systematic review and meta-analysis. Process. Saf. Environ. Prot. (2020). https://doi.org/10.1016/j.psep.2019.12.004

    Article  Google Scholar 

  19. R. Rahmati, B. Nayebi, B. Ayati, Investigating the effect of hydrogen peroxide as an electron acceptor in increasing the capability of slurry photocatalytic process in dye removal. Water Sci. Technol. 83, 2414–2423 (2021). https://doi.org/10.2166/WST.2021.136

    Article  CAS  PubMed  Google Scholar 

  20. M. Syafrudin, R.A. Kristanti, A. Yuniarto, T. Hadibarata, J. Rhee, W.A. Al-Onazi, T.S. Algarni, A.H. Almarri, A.M. Al-Mohaimeed, Pesticides in drinking water—a review. Int. J. Environ. Res. Public Health 18, 468 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Raashid, M. Kazmi, A. Ikhlaq, T. Iqbal, M. Sulaiman, A.M. Zafar, A.A. Hassan, Degradation of sulfoxaflor pesticide in aqueous solutions utilizing photocatalytic ozonation with the simultaneous use of titanium dioxide and iron zeolite catalysts. Water 15, 1283 (2023). https://doi.org/10.3390/W15071283

    Article  CAS  Google Scholar 

  22. V. Mezzanotte, R. Canziani, E. Sardi, L. Spada, Removal of pesticides by a combined ozonation/attached biomass process sequence. Ozone Sci. Eng. 27, 327–331 (2005)

    Article  CAS  Google Scholar 

  23. G. Gopalakrishnan, R.B. Jeyakumar, A. Somanathan, Challenges and emerging trends in advanced oxidation technologies and integration of advanced oxidation processes with biological processes for wastewater treatment. Sustainability (Switzerland). (2023). https://doi.org/10.3390/SU15054235

    Article  PubMed Central  Google Scholar 

  24. X. Liu, Z. Yang, J. Peng, L. Chen, Y. Yang, H. Li, L. Yang, Advanced treatment of secondary effluent by the integration of heterogeneous catalytic ozonation and biological aerated filter. Water Sci. Technol. (2023). https://doi.org/10.2166/WST.2023.099

    Article  PubMed  Google Scholar 

  25. S.H. Güler, Ö. Güler, E. Evin, S. Islak, Electrical and optical properties of ZnO-milled Fe2O3 nanocomposites produced by powder metallurgy route. Optik (Stuttg). 127, 3187–3191 (2016)

    Article  ADS  Google Scholar 

  26. M.A. Vishnuganth, N. Remya, M. Kumar, N. Selvaraju, Carbofuran removal in continuous-photocatalytic reactor: reactor optimization, rate-constant determination and carbofuran degradation pathway analysis. J. Environ. Sci. Health B. 52, 353–360 (2017). https://doi.org/10.1080/03601234.2017.1283141

    Article  CAS  PubMed  Google Scholar 

  27. V. Balachandar, J. Brijitta, K. Viswanathan, R. Sampathkumar, Investigations on the structural, optical and dielectric properties of ball-milled ZnO–Fe2O3 nanocomposites. Int. J. Nanosci. 19, 1950034 (2020)

    Article  CAS  Google Scholar 

  28. O.P. Bolade, A.B. Williams, N.U. Benson, Green synthesis of iron-based nanomaterials for environmental remediation: a review. Environ. Nanotechnol. Monit. Manag. (2020). https://doi.org/10.1016/J.ENMM.2019.100279

    Article  Google Scholar 

  29. N. Miras, Z. Alhalili, Metal oxides nanoparticles: general structural description, chemical, physical, and biological synthesis methods, role in pesticides and heavy metal removal through wastewater treatment. Molecules 28, 3086 (2023). https://doi.org/10.3390/MOLECULES28073086

    Article  Google Scholar 

  30. Q.L. Zhang, Z.M. Yang, B.J. Ding, X.Z. Lan, Y.J. Guo, Preparation of copper nanoparticles by chemical reduction method using potassium borohydride. Trans. Nonferrous Metals Soc. China. 20, s240–s244 (2010). https://doi.org/10.1016/S1003-6326(10)60047-7

    Article  CAS  Google Scholar 

  31. R.K. Das, V.L. Pachapur, L. Lonappan, M. Naghdi, R. Pulicharla, S. Maiti, M. Cledon, L.M.A. Dalila, S.J. Sarma, S.K. Brar, Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol. Environ. Eng. (2017). https://doi.org/10.1007/S41204-017-0029-4

    Article  Google Scholar 

  32. R. Dubadi, S.D. Huang, M. Jaroniec, Mechanochemical synthesis of nanoparticles for potential antimicrobial applications. Materials. 16, 1460 (2023). https://doi.org/10.3390/MA16041460

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. C.R. Chaudhury, A. Roychowdhury, A. Das, D. Das, Magneto-optical properties of α-Fe2O3@ZnO nanocomposites prepared by the high energy ball-milling technique. J. Phys. Chem. Solids 92, 38–44 (2016). https://doi.org/10.1016/J.JPCS.2016.01.014

    Article  CAS  ADS  Google Scholar 

  34. S. Karamat, R.S. Rawat, P. Lee, T.L. Tan, R.V. Ramanujan, Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation. Progress Nat. Sci. Mater. Int. 24, 142–149 (2014). https://doi.org/10.1016/J.PNSC.2014.03.009

    Article  CAS  Google Scholar 

  35. C.C. Piras, S. Fernández-Prieto, W.M. De Borggraeve, Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv. 1, 937–947 (2019). https://doi.org/10.1039/C8NA00238J

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. N. Prasoetsopha, S. Pinitsoontorn, T. Kamwanna, K. Kurosaki, S. Yamanaka, Effect of ball-milling time on particle size of Ca3Co4O9+δ. Chiang Mai Univ J Nat Sci. 13, 635–643 (2014). https://doi.org/10.12982/cmujns.2014.0065

    Article  Google Scholar 

  37. F. Achouri, S. Corbel, A. Aboulaich, L. Balan, A. Ghrabi, M. Ben Said, R. Schneider, Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures, Journal of Physics and Chemistry of Solids. 75 (2014) 1081–1087. https://doi.org/10.1016/J.JPCS.2014.05.013.

  38. D. Sun, L. Jia, C. Wang, H. Liu, R. Chen, Preparation of the additive-modified α-Fe2O3/g-C3N4 Z-scheme composites with improved visible-light photocatalytic activity. J. Environ. Chem. Eng. 9, 106274 (2021). https://doi.org/10.1016/J.JECE.2021.106274

    Article  CAS  Google Scholar 

  39. A. Miszczyk, Protective and suppressing electromagnetic interference properties of epoxy coatings containing nano-sized NiZn ferrites. Front Mater. 7, 183 (2020). https://doi.org/10.3389/fmats.2020.00183

    Article  ADS  Google Scholar 

  40. C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018). https://doi.org/10.1016/j.rser.2017.08.020

    Article  CAS  Google Scholar 

  41. C. Wu, Facile one-step synthesis of N-doped ZnO micropolyhedrons for efficient photocatalytic degradation of formaldehyde under visible-light irradiation. Appl. Surf. Sci. 319, 237–243 (2014). https://doi.org/10.1016/j.apsusc.2014.04.217

    Article  CAS  ADS  Google Scholar 

  42. M. Malayeri, F. Haghighat, C.-S. Lee, Modeling of volatile organic compounds degradation by photocatalytic oxidation reactor in indoor air: a review. Build. Environ. 154, 309–323 (2019). https://doi.org/10.1016/j.buildenv.2019.02.023

    Article  Google Scholar 

  43. S. Reisi, H. Farimaniraad, M. Baghdadi, M.A. Abdoli, Immobilization of polypyrrole on waste face masks using a novel in-situ-surface polymerization method: removal of Cr(VI) from electroplating wastewater. Environ. Technol. (2023). https://doi.org/10.1080/09593330.2023.2210771

    Article  PubMed  Google Scholar 

  44. E. Yue, Q. Yang, Y. Guo, L. Lian, J. Li, E.R. Blatchley, CH3NCl2 formation from chlorination of carbamate insecticides. Environ. Sci. Technol. 53, 13098–13106 (2019). https://doi.org/10.1021/acs.est.9b03891

    Article  CAS  ADS  Google Scholar 

  45. G. Nagaraju, G.C. Shivaraju, G. Banuprakash, D. Rangappa, Photocatalytic activity of ZnO nanoparticles: synthesis via solution combustion method. Mater. Today Proc. 4, 11700–11705 (2017). https://doi.org/10.1016/j.matpr.2017.09.085

    Article  Google Scholar 

  46. I. Ben-Amor, H. Hemmami, S.E. Laouini, M.S. Mahboub, A. Barhoum, Sol-gel synthesis of ZnO nanoparticles using different chitosan sources: effects on antibacterial activity and photocatalytic degradation of AZO dye. Catalysts (2022). https://doi.org/10.3390/CATAL12121611

    Article  Google Scholar 

  47. S.K. Dhoke, Synthesis of nano-ZnO by chemical method and its characterization. Results Chem. 5, 100771 (2023). https://doi.org/10.1016/J.RECHEM.2023.100771

    Article  CAS  Google Scholar 

  48. R. Rahmat, H. Heryanto, A.N. Fahri, I. Mutmainna, D. Tahir, The relation between structural, optical, and electronic properties of composite CuO/ZnO in supporting photocatalytic performance. Desalination Water Treat. (2022). https://doi.org/10.5004/dwt.2022.28794

    Article  Google Scholar 

  49. A. Kheradmand, M. Negarestani, A. Mollahosseini, H. Shayesteh, H. Farimaniraad, Low-cost treated lignocellulosic biomass waste supported with FeCl3/Zn(NO3)2 for water decolorization. Sci. Rep. 12, 1–18 (2022). https://doi.org/10.1038/s41598-022-20883-4

    Article  CAS  ADS  Google Scholar 

  50. L. Liccardo, E. Lushaj, L.D. Compare, E. Moretti, A. Vomiero, Nanoscale ZnO/α-Fe2O3 heterostructures: toward efficient and low-cost photoanodes for water splitting. Small Sci. 2, 2100104 (2022). https://doi.org/10.1002/SMSC.202100104

    Article  CAS  Google Scholar 

  51. M. Junaid, I. Khan, Z. Kanwal, M. Yousaf, M. Hessien, E. Dana, K. Al-Amer, M.M. Khalaf, Nano ZnO (hexagonal wurtzite) of different shapes under various conditions: fabrication and characterization. Mater. Res. Express. 6, 085057 (2019). https://doi.org/10.1088/2053-1591/AB1C21

    Article  ADS  Google Scholar 

  52. M. Boulares, B. Chamam, A. Mejri, M.A. Wahab, A. Haddouk, L. El Mir, A.H. Hamzaoui, A. Kallel, C. Tizaoui, I. Trabelsi, Robust magnetic γ-Fe2O3/Al–ZnO adsorbent for chlorpyriphos removal in water. Water 14, 1160 (2022). https://doi.org/10.3390/W14071160

    Article  CAS  Google Scholar 

  53. S.K. Noukelag, F. Cummings, C.J. Arendse, M. Maaza, Physical and magnetic properties of biosynthesized ZnO/Fe2O3, ZnO/ZnFe2O4, and ZnFe2O4 nanoparticles. Results Surf. Interfaces. 10, 100092 (2023). https://doi.org/10.1016/J.RSURFI.2022.100092

    Article  Google Scholar 

  54. T. Pandiyarajan, R. Udayabhaskar, B. Karthikeyan, Role of Fe doping on structural and vibrational properties of ZnO nanostructures. Appl. Phys. A Mater. Sci. Process. 107, 411–419 (2012). https://doi.org/10.1007/S00339-011-6755-8/TABLES/2

    Article  CAS  ADS  Google Scholar 

  55. Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry, (n.d.). https://www.astm.org/e1621-21.html (accessed 18 Apr 18, 2023)

  56. A. Sanei, K. Dashtian, J. Yousefi-Seyf, F. Seidi, E. Kolvari, Biomass derived reduced-graphene-oxide supported α-Fe2O3/ZnO S-scheme heterostructure: robust photocatalytic wastewater remediation. J. Environ. Manag. 332, 117377 (2023). https://doi.org/10.1016/J.JENVMAN.2023.117377

    Article  CAS  Google Scholar 

  57. A.N. Kadam, J. Lee, S.V. Nipane, S.W. Lee, Nanocomposites for visible light photocatalysis (Elsevier, 2022). https://doi.org/10.1016/B978-0-12-823018-3.00017-8

    Book  Google Scholar 

  58. Y. Jiao, D. Han, Y. Lu, Y. Rong, L. Fang, Y. Liu, R. Han, Characterization of pine-sawdust pyrolytic char activated by phosphoric acid through microwave irradiation and adsorption property toward CDNB in batch mode. Desalination Water Treat. 77, 247–255 (2017). https://doi.org/10.5004/dwt.2017.20780

    Article  CAS  Google Scholar 

  59. E. Hapeshi, A. Achilleos, M.I. Vasquez, C. Michael, N.P. Xekoukoulotakis, D. Mantzavinos, D. Kassinos, Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Res. 44, 1737–1746 (2010). https://doi.org/10.1016/j.watres.2009.11.044

    Article  CAS  PubMed  Google Scholar 

  60. M. Farzadkia, K. Rahmani, M. Gholami, A. Esrafili, A. Rahmani, H. Rahmani, Investigation of photocatalytic degradation of clindamycin antibiotic by using nano-ZnO catalysts. Korean J. Chem. Eng. 31, 2014–2019 (2014). https://doi.org/10.1007/s11814-014-0119-y

    Article  CAS  Google Scholar 

  61. X. Shen, 10 - Molecularly Imprinted Photocatalysts, in: S. Li, S. Cao, S.A. Piletsky, A.P.F.B.T.-M.I.C. Turner (Eds.), Elsevier, Amsterdam, (2016) pp. 211–228 https://doi.org/10.1016/B978-0-12-801301-4.00010-4

  62. J.E. Duffy, M.A. Anderson, G. Hill-Charles, W.A. Zeltner, Photocatalytic oxidation as a secondary treatment method following wet air oxidation. Ind. Eng. Chem. Res. 39, 3698–3706 (2000). https://doi.org/10.1021/ie990941o

    Article  CAS  Google Scholar 

  63. A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review. Sustain. Cities Soc. 27, 407–418 (2016). https://doi.org/10.1016/j.scs.2016.08.004

    Article  Google Scholar 

  64. A. Aliasghar, P. Javidan, S.A. Rahmaninezhad, N. Mehrdadi, Optimizing the desalination rate in a photoelectrocatalytic desalination cell (PEDC) by altering operational conditions. Water Supply. 22, 8659–8668 (2022)

    Article  CAS  Google Scholar 

  65. S.A. Rahmaninezhad, N. Mehrdadi, Z. Mahzari, Analysis of the factors controlling the performance of a photoelectrocatalytic cell separated by UF membrane in degrading methylene blue. J. Aust. Ceram. Soc. 57, 163–172 (2021). https://doi.org/10.1007/S41779-020-00518-5/FIGURES/9

    Article  CAS  Google Scholar 

  66. J. Podporska-Carroll, A. Myles, B. Quilty, D.E. McCormack, R. Fagan, S.J. Hinder, D.D. Dionysiou, S.C. Pillai, Antibacterial properties of F-doped ZnO visible light photocatalyst. J. Hazard. Mater. 324, 39–47 (2017). https://doi.org/10.1016/j.jhazmat.2015.12.038

    Article  CAS  PubMed  Google Scholar 

  67. W. Yu, J. Zhang, T. Peng, New insight into the enhanced photocatalytic activity of N- C- and S-doped ZnO photocatalysts. Appl. Catal. B 181, 220–227 (2016). https://doi.org/10.1016/j.apcatb.2015.07.031

    Article  CAS  Google Scholar 

  68. A.B. Patil, K.R. Patil, S.K. Pardeshi, Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO. J. Hazard. Mater. 183, 315–323 (2010). https://doi.org/10.1016/j.jhazmat.2010.07.026

    Article  CAS  PubMed  Google Scholar 

  69. U.I. Gaya, A.H. Abdullah, Z. Zainal, M.Z. Hussein, Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: Intermediates, influence of dosage and inorganic anions. J. Hazard. Mater. 168, 57–63 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.130

    Article  CAS  PubMed  Google Scholar 

  70. M. Negarestani, A. Mollahosseini, H. Farimaniraad, H. Ghiasinejad, H. Shayesteh, A. Kheradmand, Efficient removal of non-steroidal anti-inflammatory ibuprofen by polypyrrole-functionalized magnetic zeolite from aqueous solution: kinetic, equilibrium, and thermodynamic studies. Sep. Sci. Technol. 58, 435–453 (2022). https://doi.org/10.1080/01496395.2022.2123743

    Article  CAS  Google Scholar 

  71. M.R. Delsouz-Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. J. Mol. Liq. 258, 354–365 (2018). https://doi.org/10.1016/j.molliq.2017.11.030

    Article  CAS  Google Scholar 

  72. A. Shakiba, A. Aliasghar, K. Moazeni, M. Pazoki, Hydrothermal carbonization of sewage sludge with sawdust and corn stalk: optimization of process parameters and characterization of hydrochar. Bioenergy Res. 1, 1–12 (2023). https://doi.org/10.1007/S12155-022-10552-9/FIGURES/6

    Article  Google Scholar 

  73. K. Kighuta, A.I. Gopalan, D.E. Lee, G. Saianand, Y.L. Hou, S.S. Park, K.P. Lee, J.C. Lee, W.J. Kim, Optimization and modeling of efficient photocatalytic TiO2-ZnO composite preparation parameters by response surface methodology. J. Environ. Chem. Eng. 9, 106417 (2021). https://doi.org/10.1016/J.JECE.2021.106417

    Article  CAS  Google Scholar 

  74. S.A. Rahmaninezhad, N. Mehrdadi, Z. Mahzari, Modeling and optimizing the photo-electro-catalytic degradation of methylene blue by response surface methodology. Optik (Stuttg). 202, 163711 (2020). https://doi.org/10.1016/J.IJLEO.2019.163711

    Article  CAS  ADS  Google Scholar 

  75. H. Khoshvaght, M. Delnavaz, M. Leili, Optimization of acetaminophen removal from high load synthetic pharmaceutical wastewater by experimental and ANOVA analysis. J. Water Process Eng. 42, 102107 (2021). https://doi.org/10.1016/j.jwpe.2021.102107

    Article  Google Scholar 

  76. M. Kaur, A. Noonia, A. Dogra, P.S. Thind, Optimising the parameters affecting degradation of cypermethrin in an aqueous solution using TiO2/H2O2 mediated UV photocatalysis: RSM-BBD, kinetics, isotherms and reusability. Int. J. Environ. Anal. Chem. (2021). https://doi.org/10.1080/03067319.2021.1872066

    Article  Google Scholar 

  77. R. Rahmati, V. Sidhu, R. Nunez, R. Datta, D. Sarkar, Correlation of phosphorus adsorption with chemical properties of aluminum-based drinking water treatment residuals collected from various parts of the United States. Molecules 27, 7194 (2022). https://doi.org/10.3390/MOLECULES27217194/S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. F. Kronthaler, Statistics Applied With Excel: Data Analysis Is (Not) an Art, 2023. https://link.springer.com/book/9783662643204 (accessed 18 Apr 2023)

  79. T.Q.Q. Viet, V.H. Khoi, N. Thi-Huong-Giang, H. Thi-Van-Anh, N.M. Dat, M.T. Phong, N.H. Hieu, Statistical screening and optimization of photocatalytic degradation of methylene blue by ZnO–TiO2/rGO nanocomposite. Colloids Surf A Physicochem Eng Asp 629, 127464 (2021). https://doi.org/10.1016/J.COLSURFA.2021.127464

    Article  CAS  Google Scholar 

  80. A.T.F.H.A. Akens, E.B. Ekeinde, Synthesis of biodiesel from blend of seeds oil-animal fat employing agricultural wastes as base catalyst. Case Stud. Chem. Environ. Eng. 5, 100202 (2022). https://doi.org/10.1016/J.CSCEE.2022.100202

    Article  Google Scholar 

  81. G. Towler, R. Sinnott, Chapter 7—capital cost estimating, in Chemical engineering design. (Elsevier, 2012), pp.307–354. https://doi.org/10.1016/B978-0-08-096659-5.00007-9

    Chapter  Google Scholar 

  82. S. Mortazavi-Derazkola, M. Salavati-Niasari, M.P. Mazhari, H. Khojasteh, M. Hamadanian, S. Bagheri, Magnetically separable Fe3O4@SiO2@TiO2 nanostructures supported by neodymium(III): fabrication and enhanced photocatalytic activity for degradation of organic pollution. J. Mater. Sci. Mater. Electron. 28, 14271–14281 (2017). https://doi.org/10.1007/S10854-017-7286-7/FIGURES/11

    Article  CAS  Google Scholar 

  83. M. Chauhan, N. Kaur, P. Bansal, R. Kumar, S. Srinivasan, G.R. Chaudhary, Proficient photocatalytic and sonocatalytic degradation of organic pollutants using CuO nanoparticles. J. Nanomater. Nanomater. (2020). https://doi.org/10.1155/2020/6123178

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Vice-chancellor in Research Affairs of Kharazmi University for their support in performing this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Delnavaz.

Ethics declarations

Conflict of Interest

The authors declare that the work reported in this paper was not influenced by any competing financial interests or personal relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, A., Aliasghar, A., Rahmati, R. et al. Green Synthesis of ZnO/αFe2O3 Nano-photocatalyst for Efficient Removal of Carbamate Pesticides in Wastewater: Optimization, Mineralization, and Financial Analysis. Korean J. Chem. Eng. 41, 249–269 (2024). https://doi.org/10.1007/s11814-024-00073-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00073-w

Keywords

Navigation