Skip to main content
Log in

Cobalt Supported on Ce-MOF-Derived CeO2 as a Catalyst for the Efficient Epoxidation of Styrene Under Aerobic Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Based on the important application of epoxides, it is an attractive and urgent topic to develop sustainable and more efficient preparation protocols for epoxides. Herein, we report an exploration of styrene epoxidation method with CoOX/CeO2 bimetallic oxides as a heterogenous catalyst. The catalyst was prepared by the pyrolysis of a MOF precursor and characterized by SEM, TEM, BET, XRD, XPS, ICP-OES and Raman spectroscopy. The results indicate that the presence of abundant oxygen vacancies on the surface of CoOX/CeO2, and the synergy of CoOX/CeO2 bimetallic oxides significantly contribute to the excellent catalytic performance. The catalytic oxidation protocol showed high styrene conversion and selectivity, and the range of suitable substrates was also explored. In addition, CoOX/CeO2 catalyst showed good reusability and stability after recycling for six times without significant loss of catalytic activity. Designed control experiments revealed that the reaction proceeds via a co-oxidation mechanism and reactive oxygen species (ROS) are involved.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Sharma AS, Sharma VS, Kaur H, Varma RS (2020) Supported heterogeneous nanocatalysts in sustainable, selective and eco-friendly epoxidation of olefins. Green Chem 22:5902–5936. https://doi.org/10.1039/D0GC01927E

    Article  CAS  Google Scholar 

  2. Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichi S, Mizuno N (2003) Efficient epoxidation of olefins with ≥99% selectivity and use of hydrogen peroxide. Science 300:964–966. https://doi.org/10.1126/science.1083176

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Yang H, Liu Q, Li Y, Sun K, Chen Z, Peng Q, Chen C (2020) Isolated single-atom Ruthenium anchored on beta zeolite as an efficient heterogeneous catalyst for styrene epoxidation. ChemNanoMat 6:1647–1651. https://doi.org/10.1002/cnma.202000394

    Article  CAS  Google Scholar 

  4. Masunga N, Tito GS, Meijboom R (2018) Catalytic evaluation of mesoporous metal oxides for liquid phase oxidation of styrene. Appl Catal A Gen 552:154–167. https://doi.org/10.1016/j.apcata.2017.12.010

    Article  CAS  Google Scholar 

  5. Wu L, Wang X, Li B (2022) Porous core–shell Fe3O4@CuSiO3 microsphere as effective catalyst for styrene epoxidation. Appl Surf Sci 591:153158. https://doi.org/10.1016/j.apsusc.2022.153158

    Article  CAS  Google Scholar 

  6. Liu J, Chen T, Jian P, Wang L (2018) Hierarchical 0D/2D Co3O4 hybrids rich in oxygen vacancies as catalysts towards styrene epoxidation reaction. Chin J Catal 39:1942–1950. https://doi.org/10.1016/S1872-2067(18)63133-X

    Article  CAS  Google Scholar 

  7. Sun D, Wu Z, Zhang X, Yang J, Zhao Y, Nam W, Wang Y (2023) Brønsted acids promote olefin oxidations by bioinspired nonheme CoIII(PhIO)(OH) complexes: a role for low-barrier hydrogen bonds. J Am Chem Soc 145:5739–5749. https://doi.org/10.1021/jacs.2c12307

    Article  CAS  PubMed  Google Scholar 

  8. Kal S, Xu S, Que L Jr (2020) Bio-inspired nonheme iron oxidation catalysis: involvement of oxoiron(V) oxidants in cleaving strong C−H bonds. Angew Chem Int Ed 59:7332–7349. https://doi.org/10.1002/anie.201906551

    Article  CAS  Google Scholar 

  9. Chen J, Jiang Z, Fukuzumi S, Nam W, Wang B (2020) Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coord Chem Rev 421:213443. https://doi.org/10.1016/j.ccr.2020.213443

    Article  CAS  Google Scholar 

  10. Xiong Y, Sun W, Xin P, Chen W, Zheng X, Yan W, Zheng L, Dong J, Zhang J, Wang D, Li Y (2020) Gram-scale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene. Adv Mater 32:2000896. https://doi.org/10.1002/adma.202000896

    Article  CAS  Google Scholar 

  11. Liu L, Tricard S, Peng X, Chen Y, Liu H, Wang G, Fang J, Zhao J (2022) Tuning the electronic structure and hydrophilicity of Prussian-blue type catalysts by incorporation of alklypyrazinium bromides, for enhanced activity. Appl Catal A Gen 647:118889. https://doi.org/10.1016/j.apcata.2022.118889

    Article  CAS  Google Scholar 

  12. Liu J, Wang H, Wang L, Jian P, Yan X (2022) Phase-dependent catalytic performance of MnO2 for solvent-free oxidation of ethybenzene with molecular oxygen. Appl Catal B Environ 305:121050. https://doi.org/10.1016/j.apcatb.2021.121050

    Article  CAS  Google Scholar 

  13. Liu B, Wang P, Lopes A, Jin L, Zhong W, Pei Y, Suib SL, He J (2017) Au–carbon electronic interaction mediated selective oxidation of styrene. ACS Catal 7:3483–3488. https://doi.org/10.1021/acscatal.7b01048

    Article  CAS  Google Scholar 

  14. Tian S, Peng C, Dong J, Xu Q, Chen Z, Zhai D, Wang Y, Gu L, Hu P, Duan H, Wang D, Li Y (2021) High-loading single-atomic-site silver catalysts with an Ag1–C2N1 structure showing superior performance for epoxidation of styrene. ACS Catal 11:4946–4954. https://doi.org/10.1021/acscatal.1c00455

    Article  CAS  Google Scholar 

  15. Guo H, Lu X, He J, Zhang H, Zhang H, Dong Y, Zhou D, Xia Q (2023) Co-MOF nanosheet supported on ZSM-5 with an improved catalytic activity for air epoxidation of olefins. Mater Chem Phys 294:127001. https://doi.org/10.1016/j.matchemphys.2022.127001

    Article  CAS  Google Scholar 

  16. Liu J, Meng R, Li J, Jian P, Wang L, Jian R (2019) Achieving high-performance for catalytic epoxidation of styrene with uniform magnetically separable CoFe2O4 nanoparticles. Appl Catal B Environ 254:214–222. https://doi.org/10.1016/j.apcatb.2019.04.083

    Article  CAS  Google Scholar 

  17. Fu Y, Liu L, Tricard S, Liang K, Zhang J, Fang J, Zhao J (2023) Slow pyrolysis of Cu/Co-Co Prussian blue analog to enhance catalytic activity and selectivity in epoxidation of styrene. Appl Catal A Gen 657:119161. https://doi.org/10.1016/j.apcata.2023.119161

    Article  CAS  Google Scholar 

  18. Halder J, Roy T, Satpati S, Ghosal S, Mukherjee D, Reddy BM (2022) Insight of solvent effect on CeO2 catalyzed oxidation of styrene with tert-butyl hydroperoxide: a combined experimental and theoretical approach. Catal Commun 164:106413. https://doi.org/10.1016/j.catcom.2022.106413

    Article  CAS  Google Scholar 

  19. Hassan S, Kumar R, Tiwari A, Song W, van Haandel L, Pandey JK, Hensenc E, Chowdhury B (2018) Role of oxygen vacancy in cobalt doped ceria catalyst for styrene epoxidation using molecular oxygen. Mol Catal 451:238–246. https://doi.org/10.1016/j.mcat.2018.01.025

    Article  CAS  Google Scholar 

  20. De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC (2023) Principles of design and synthesis of metal derivatives from MOFs. Adv Mater 35:2210166. https://doi.org/10.1002/adma.202210166

    Article  CAS  Google Scholar 

  21. Zou K-Y, Li Z-X (2018) Controllable syntheses of MOF-derived materials. Chem Eur J 24:6506–6518. https://doi.org/10.1002/chem.201705415

    Article  CAS  PubMed  Google Scholar 

  22. Chen X, Chen X, Yu E, Cai S, Jia H, Chen J et al (2018) In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion. Chem Eng J 344:469–479. https://doi.org/10.1016/j.cej.2018.03.091

    Article  CAS  Google Scholar 

  23. Muruganantham R, Gu Y-J, Song Y-D, Kung C-W, Liu W-R (2021) Ce-MOF derived ceria: insights into the Na-ion storage mechanism as a high-rate performance anode material. Appl Mater Today 22:100935. https://doi.org/10.1016/j.apmt.2021.100935

    Article  Google Scholar 

  24. Ma Y, Tian Z, Zhai W, Qu Y (2022) Insights on catalytic mechanism of CeO2 as multiple nanozymes. Nano Res 15:10328–10342. https://doi.org/10.1007/s12274-022-4666-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mock SA, Sharp SE, Stoner TR, Radetic MJ, Zell ET, Wang R (2016) CeO2 nanorods-supported transition metal catalysts for CO oxidation. J Colloid Interface Sci 466:261–267. https://doi.org/10.1016/j.jcis.2015.12.026

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Wu C, Fan Z, Lu D, Wu X, Du Y, Guo X (2022) Insight into the contribution of cerium oxide to MnOx/CeO2 in methanol oxidation reaction: perspective from the crystal facet of CeO2. ChemCatChem 14:e202200159. https://doi.org/10.1002/cctc.202200159

    Article  CAS  Google Scholar 

  27. Zheng K, Li Y, Liu B, Jiang F, Xu Y, Liu X (2022) Ti-doped CeO2 stabilized single-atom Rhodium catalyst for selective and stable CO2 hydrogenation to ethanol. Angew Chem Int Ed 61:e202210991. https://doi.org/10.1002/anie.202210991

    Article  CAS  Google Scholar 

  28. Pal P, Pahari SK, Sinhamahapatra A, Jayachandran M, Kiruthika GVM, Bajaj HC, Panda AB (2013) CeO2 nanowires with high aspect ratio and excellent catalytic activity for selective oxidation of styrene by molecular oxygen. RSC Adv 3:10837–10847. https://doi.org/10.1039/C3RA23485A

    Article  ADS  CAS  Google Scholar 

  29. Liu J, Meng R, Jian P, Jian R (2020) CeO2 nanoparticle-decorated Co3O4 microspheres for selective oxidation of ethylbenzene with molecular oxygen under solvent- and additive-free conditions. ACS Sustain Chem Eng 8:16791–16802. https://doi.org/10.1021/acssuschemeng.0c05272

    Article  CAS  Google Scholar 

  30. Kar AK, Kaur SP, Kumar DTJ, Srivastava R (2020) Efficient hydrogenolysis of aryl ethers over Ce-MOF supported Pd NPs under mild conditions: mechanistic insight using density functional theoretical calculations. Catal Sci Technol 10:6892–6901. https://doi.org/10.1039/D0CY01279C

    Article  CAS  Google Scholar 

  31. Huang D, Zheng J, Yang Q, Yang D, Sun H, Chen G et al (2023) RuO2 supported on MOF-derived CeO2 as an efficient catalyst for selective C-H oxidation of alkylarenes in water at room temperature. Micropor Mesopor Mater 354:112548. https://doi.org/10.1016/j.micromeso.2023.112548

    Article  CAS  Google Scholar 

  32. Abdelillah Ali Elhussein E, Şahin S, Bayazit ŞS (2018) Preparation of CeO2 nanofibers derived from Ce-BTC metal-organic frameworks and its application on pesticide adsorption. J Mol Liq 255:10–17. https://doi.org/10.1016/j.molliq.2018.01.165

    Article  CAS  Google Scholar 

  33. Wu C, Chou L-Y, Long L, Si X, Lo W-S, Tsung C-K et al (2019) Structural control of uniform MOF-74 microcrystals for the study of adsorption kinetics. ACS Appl Mater Interfaces 11:35820–35826. https://doi.org/10.1021/acsami.9b13965

    Article  CAS  PubMed  Google Scholar 

  34. Jin M, Yu L, Chen H, Ma X, Cui K, Wen Z et al (2021) Base-free selective conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a CoOx-CeO2 catalyst. Catal Today 367:2–8. https://doi.org/10.1016/j.cattod.2020.10.038

    Article  CAS  Google Scholar 

  35. Zhang F, Liu Z, Zhang S, Akter N, Palomino RM, Vovchok D et al (2018) In situ elucidation of the active state of Co–CeOx catalysts in the dry reforming of methane: the important role of the reducible oxide support and interactions with cobalt. ACS Catal 8:3550–3560. https://doi.org/10.1021/acscatal.7b03640

    Article  CAS  Google Scholar 

  36. Hu F, Peng Y, Chen J, Liu S, Song H, Li J (2019) Low content of CoOx supported on nanocrystalline CeO2 for toluene combustion: the importance of interfaces between active sites and supports. Appl Catal B Environ 240:329–336. https://doi.org/10.1016/j.apcatb.2018.06.024

    Article  CAS  Google Scholar 

  37. Jiang N, Zhao Y, Qiu C, Shang K, Lu N, Li J et al (2019) Enhanced catalytic performance of CoOx-CeO2 for synergetic degradation of toluene in multistage sliding plasma system through response surface methodology (RSM). Appl Catal B Environ 259:118061. https://doi.org/10.1016/j.apcatb.2019.118061

    Article  CAS  Google Scholar 

  38. Liu S, Xue W, Ji Y, Xu W, Chen W, Jia L et al (2023) Interfacial oxygen vacancies at Co3O4-CeO2 heterointerfaces boost the catalytic reduction of NO by CO in the presence of O2. Appl Catal B Environ 323:122151. https://doi.org/10.1016/j.apcatb.2022.122151

    Article  CAS  Google Scholar 

  39. Zhang C, Wang Y, Li G, Chen L, Zhang Q, Wang D et al (2020) Tuning smaller Co3O4 nanoparticles onto HZSM-5 zeolite via complexing agents for boosting toluene oxidation performance. Appl Surf Sci 532:147320. https://doi.org/10.1016/j.apsusc.2020.147320

    Article  CAS  Google Scholar 

  40. He C, Yu Y, Yue L, Qiao N, Li J, Shen Q et al (2014) Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol. Appl Catal B Environ 147:156–166. https://doi.org/10.1016/j.apcatb.2013.08.039

    Article  CAS  Google Scholar 

  41. Xian G, Zhang G, Chang H, Zhang Y, Zou Z, Li X (2019) Heterogeneous activation of persulfate by Co3O4-CeO2 catalyst for diclofenac removal. J Environ Manag 234:265–272. https://doi.org/10.1016/j.jenvman.2019.01.013

    Article  CAS  Google Scholar 

  42. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041. https://doi.org/10.1021/acs.chemrev.5b00603

    Article  CAS  PubMed  Google Scholar 

  43. Banerjee D, Jagadeesh RV, Junge K, Pohl MM, Radnik J, Brückner A et al (2014) Convenient and mild epoxidation of alkenes using heterogeneous cobalt oxide catalysts. Angew Chem Int Ed 53:4359–4363. https://doi.org/10.1002/anie.201310420

    Article  CAS  Google Scholar 

  44. Wang C, Zhang C, Hua W, Guo Y, Lu G, Gil S et al (2017) Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts. Chem Eng J 315:392–402. https://doi.org/10.1016/j.cej.2017.01.007

    Article  CAS  Google Scholar 

  45. Rangaswamy A, Venkataswamy P, Devaiah D, Ramana S, Reddy BM (2017) Structural characteristics and catalytic performance of nanostructured Mn-doped CeO2 solid solutions towards oxidation of benzylamine by molecular O2. Mater Res Bull 88:136–147. https://doi.org/10.1016/j.materresbull.2016.12.028

    Article  CAS  Google Scholar 

  46. Mukherjee D, Rao BG, Reddy BM (2017) Characterization of ceria-based nano-oxide catalysts by Raman spectroscopy. Top Catal 60:1673–1681. https://doi.org/10.1007/s11244-017-0846-5

    Article  CAS  Google Scholar 

  47. Li F, Tang J, Ke Q, Guo Y, Ha MN, Wan C et al (2021) Investigation into enhanced catalytic performance for epoxidation of styrene over LaSrCoxFe2–xO6 double perovskites: the role of singlet oxygen species promoted by the photothermal effect. ACS Catal 11:11855–11866. https://doi.org/10.1021/acscatal.1c03164

    Article  CAS  Google Scholar 

  48. Gao X, Lin J, Zhang L, Lou X, Guo G, Peng N et al (2021) Iodine-initiated dioxygenation of aryl alkenes using tert-butylhydroperoxides and water: a route to vicinal diols and bisperoxides. J Org Chem 86:15469–15480. https://doi.org/10.1021/acs.joc.1c01968

    Article  CAS  PubMed  Google Scholar 

  49. Lin R, Chen F, Jiao N (2012) Metal-free, NHPI catalyzed oxidative cleavage of C-C double bond using molecular oxygen as oxidant. Org Lett 14:4158–4161. https://doi.org/10.1021/ol3018215

    Article  CAS  PubMed  Google Scholar 

  50. Wang GZ, Li XL, Dai JJ, Xu HJ (2014) AIBN-catalyzed oxidative cleavage of gem-disubstituted alkenes with O2 as an oxidant. J Org Chem 79:7220–7225. https://doi.org/10.1021/jo501203a

    Article  CAS  PubMed  Google Scholar 

  51. Cui M, Dong L, Shen Z, Guo T, Zhao W, Liang C et al (2023) Preparation of porous carbon supported Co element doping spinel copper ferrite for the catalytic oxidation of vanillyl alcohol. Appl Catal A Gen 664:119325. https://doi.org/10.1016/j.apcata.2023.119325

    Article  CAS  Google Scholar 

  52. Dissanayake S, Vora N, Achola L, Dang Y, He J, Tobin Z et al (2021) Synergistic catalysis by Mn promoted ceria for molecular oxygen assisted epoxidation. Appl Catal B Environ 282:119573. https://doi.org/10.1016/j.apcatb.2020.119573

    Article  CAS  Google Scholar 

  53. Zhou R, Zhang D, Wang P, Huang Y (2021) Regulation of excitons dissociation in AgI/Bi3O4Br for advanced reactive oxygen species generation towards photodegradation. Appl Catal B Environ 285:119820. https://doi.org/10.1016/j.apcatb.2020.119820

    Article  CAS  Google Scholar 

  54. Huang X, Akdim O, Douthwaite M, Wang K, Zhao L, Lewis RJ et al (2022) Au–Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 603:271–275. https://doi.org/10.1038/s41586-022-04397-7

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation, China (ZR2020MB006 and ZR2016JL009) and the University of Jinan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiqing Zhao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2703 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Wang, C., Zhao, R. et al. Cobalt Supported on Ce-MOF-Derived CeO2 as a Catalyst for the Efficient Epoxidation of Styrene Under Aerobic Conditions. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04645-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04645-7

Keywords

Navigation