Skip to main content
Log in

Effect of Supporter on the Activity and Stability of Immobilized Cellulase to Hydrolyze Cellulose

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Immobilization is a crucial method for enzyme recovery and utilization. Among all techniques, physical adsorption stands out as a commonly employed immobilization method, driven by the surface properties of the supporter. In this study, the focus is to investigate the effect of the nature of the supporter surface on the performance of the immobilized enzyme. A range of supporters with varying hydrophilic-hydrophobic properties was obtained by treating cover glasses with piranha etching solution and different silane coupling agents. Subsequently, cellulase was immobilized on these modified supporters for cellulose hydrolysis, aiming to investigate the supporter's impact on the activity and stability of immobilized enzymes. Additionally, the supporters were characterized using infrared spectroscopy, contact angle measurements, and Zeta potential analysis. The results indicate that the stronger the supporter's hydrophobicity, the more pronounced the hydrolytic efficiency of immobilized cellulase. This work provides an effective strategy for utilizing supporter surface properties in the context of physical adsorption.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pellegrini VOA, Sepulchro AGV, Polikarpov I (2020) Enzymes for lignocellulosic biomass polysaccharide valorization and production of nanomaterials. Curr Opinion Green Sustain Chem 26:100397

    Article  Google Scholar 

  2. John MJ, Lefatle MC, Sithole B (2022) Lignin fractionation and conversion to bio-based functional products. Sustain Chem Pharm 25:100594

    Article  CAS  Google Scholar 

  3. Akram F, ul Haq I, Raja S I, Mir A S, Qureshi S S, Aqeel A, Shah F I (2022) Current trends in biodiesel production technologies and future progressions: A possible displacement of the petro-diesel. Journal of Cleaner Production 133479

  4. Khan R, Jolly R, Fatima T, Shakir M (2022) Extraction processes for deriving cellulose: A comprehensive review on green approaches. Polym Adv Technol 33(7):2069–2090

    Article  CAS  Google Scholar 

  5. Chen H, Fu X (2016) Industrial technologies for bioethanol production from lignocellulosic biomass. Renew Sustain Energy Rev 57:468–478

    Article  CAS  Google Scholar 

  6. Kassanov B, Wang J, Fu Y, Chang J (2017) Cellulose enzymatic saccharification and preparation of 5-hydroxymethylfurfural based on bamboo hydrolysis residue separation in ionic liquids. RSC Adv 7(49):30755–30762

    Article  CAS  Google Scholar 

  7. Shen F, Smith RL Jr, Li L, Yan L, Qi X (2017) Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustain Chem Eng 5(3):2421–2427

    Article  CAS  Google Scholar 

  8. Cao Y, Zhang R, Cheng T, Guo J, Xian M, Liu H (2017) Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives. Appl Microbiol Biotechnol 101(2):521–532

    Article  CAS  PubMed  Google Scholar 

  9. Li L, Liu X, Yu S, Liu S, Liu F, Xie C (2015) Design of a thermoregulated phase-separable system for homogeneous enzymolysis of cellulose. Green Chem 17(5):3067–3074

    Article  CAS  Google Scholar 

  10. Zhao Y, Wu B, Yan B, Gao P (2004) Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase. Sci China Ser C Life Sci 47:18–24

    Article  CAS  Google Scholar 

  11. Singh K, Mishra A, Sharma D, Singh K (2019) Nanotechnology in enzyme immobilization: An overview on enzyme immobilization with nanoparticle matrix. Curr Nanosci 15(3):234–241

    Article  CAS  Google Scholar 

  12. Liu DM, Chen J, Shi YP (2018) Tyrosinase immobilization on aminated magnetic nanoparticles by physical adsorption combined with covalent crosslinking with improved catalytic activity, reusability and storage stability. Anal Chim Acta 1006:90–98

    Article  CAS  PubMed  Google Scholar 

  13. Maity M, Bhattacharyya A, Bhowal J (2021) Production and immobilization of β-galactosidase isolated from Enterobacter aerogenes KCTC2190 by entrapment method using agar-agar organic matrix. Appl Biochem Biotechnol 193:2198–2224

    Article  CAS  PubMed  Google Scholar 

  14. Pogorevc M, Strauss U T, Riermeier T, Faber K (2002) Selectivity-enhancement in enantioselective hydrolysis of sec-alkyl sulfates by an alkylsulfatase from Rhodococcus ruber DSM44541. Tetrahedron: Asymmetry 13(13): 1443–1447

  15. Seip JE, Fager SK, Gavagan JE, Anton DL, Di Cosimo R (1994) Glyoxylic acid production using immobilized glycolate oxidase and catalase. Bioorg Med Chem 2(6):371–378

    Article  CAS  PubMed  Google Scholar 

  16. Zhang R, Liao W, Sun Y, Heng JY, Yang Z (2018) Investigating the role of glass and quartz substrates on the formation of interfacial droplets. J Phys Chem C 123(2):1151–1159

    Article  Google Scholar 

  17. Matinlinna JP, Lassila LV, Dahl JE (2010) Promotion of adhesion between resin and silica-coated titanium by silane monomers and formic acid catalyst. SILICON 2:87–93

    Article  CAS  Google Scholar 

  18. Wang X, Zhai S, Xie T (2017) Mechanism behind the improvement of coupling agent in interface bonding performance between organic transparent resin and inorganic cement matrix. Constr Build Mater 143:138–146

    Article  CAS  Google Scholar 

  19. Deshavath NN, Mukherjee G, Goud VV, Veeranki VD, Sastri CV (2020) Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. Int J Biol Macromol 156:180–185

    Article  CAS  PubMed  Google Scholar 

  20. National Center for Food Fermentation Standardization (2003) QB2583 - 2003 Fibrin Enzyme Preparation[S]. China Light Industry Press, Beijing

    Google Scholar 

  21. Nazari M, Ekelöf M, Khodjaniyazova S, Elsen NL, Williams JD, Muddiman DC (2017) Direct screening of enzyme activity using infrared matrix-assisted laser desorption electrospray ionization. Rapid Commun Mass Spectrom 31(22):1868–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gallas JP, Goupil JM, Vimont A, Lavalley JC, Gil B, Gilson JP, Miserque O (2009) Quantification of water and silanol species on various silicas by coupling IR spectroscopy and in-situ thermogravimetry. Langmuir 25(10):5825–5834

    Article  CAS  PubMed  Google Scholar 

  23. Luo J, Zhou Y, Pantano CG, Kim SH (2018) Correlation between IR peak position and bond parameter of silica glass: Molecular dynamics study on fictive temperature (cooling rate) effect. J Am Ceram Soc 101(12):5419–5427

    Article  CAS  Google Scholar 

  24. Semprebon C, McHale G, Kusumaatmaja H (2017) Apparent contact angle and contact angle hysteresis on liquid infused surfaces. Soft Matter 13(1):101–110

    Article  CAS  Google Scholar 

  25. Liu X, Mäki-Arvela P, Aho A, Vajglova Z, Gunko V M, Heinmaa I, Murzin, D Y (2018) Zeta potential of beta zeolites: Influence of structure, acidity, pH, temperature and concentration. Molecules 23(4): 946

  26. Santos MPF, Porfírio MCP, Junior ECS, Bonomo RC, Veloso CM (2022) Pepsin immobilization: Influence of carbon support functionalization. Int J Biol Macromol 203:67–79

    Article  CAS  PubMed  Google Scholar 

  27. Zeman J, Pavloková S, Vetchý D, Pitschmann V (2021) The effect of different types of lactose monohydrate on the stability of acetylcholinesterase immobilized on carriers designed to detect nerve agents. J Chem Technol Biotechnol 96(6):1758–1769

    Article  CAS  Google Scholar 

  28. Bhushan I, Alabbas A, Kuberan B, Gupta RB, Desai UR (2017) Immobilization alters heparin cleaving properties of heparinase I. Glycobiology 27(11):994–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maharani C A, Suharti S, Wonorahardjo S. (2020). Optimizing the immobilization of lipase enzyme (Aspergillus oryzae) in the silica and silica-cellulose matrix by adsorption method. In Journal of Physics: Conference Series (Vol. 1595, No. 1, p. 012011). IOP Publishing

  30. Kaschuk JJ, Lacerda TM, Frollini E (2019) Investigating effects of high cellulase concentration on the enzymatic hydrolysis of the sisal cellulosic pulp. Int J Biol Macromol 138:919–926

    Article  CAS  PubMed  Google Scholar 

  31. Maji D, Lahiri SK, Das S (2012) Study of hydrophilicity and stability of chemically modified PDMS surface using piranha and KOH solution. Surf Interface Anal 44(1):62–69

    Article  CAS  Google Scholar 

  32. Gogoi R, Tyagi AK (2021) Surface modification of jute fabric by treating with silane coupling agent for reducing its moisture regain characteristics. J Nat Fibers 18(6):803–812

    Article  CAS  Google Scholar 

  33. Taheri-Shakib J, Saadati N, Esfandiarian A, Hosseini SA, Rajabi-Kochi M (2020) Characterizing the wax-asphaltene interaction and surface morphology using analytical spectroscopy and microscopy techniques. J Mol Liq 302:112506

    Article  CAS  Google Scholar 

  34. Tolan JS (2002) Iogen’s process for producing ethanol from cellulosic biomass. Clean Technol Environ Policy 3:339–345

    Article  Google Scholar 

  35. Wallace EF, Lovenberg W (1974) Studies on the carbohydrate moiety of dopamine β-hydroxylase: interaction of the enzyme with concanavalin A. Proc Natl Acad Sci 71(8):3217–3220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoshioka T, Shimamura M (1986) Studies of polystyrene-based ion-exchange fiber. IV. A novel fiber-form material for adsorption and immobilization of biologically-active proteins. Bull Chem Soc Jpn 59(2):399–403

    Article  CAS  Google Scholar 

  37. Maxim S, Flondor A, Carpov A (1987) Ionic binding of biologically active proteins on cross-linked acrylic macromolecular supports. Biotechnol Bioeng 30(5):593–597

    Article  CAS  PubMed  Google Scholar 

  38. Cai C, Zhan X, Lou H, Li Q, Pang Y, Qian Y, Qiu X (2018) Recycling cellulase by a pH-responsive lignin-based carrier through electrostatic interaction. ACS Sustain Chem Eng 6(8):10679–10686

    Article  CAS  Google Scholar 

  39. Wan J, Zhang L, Yang B, Jia B, Yang J, Su X (2022) Enzyme immobilization on amino-functionalized Fe3O4@SiO2 via electrostatic interaction with enhancing biocatalysis in sludge dewatering. Chem Eng J 427:131976

    Article  CAS  Google Scholar 

  40. Maxim S, Flondor A, Carpov A, Rugina V, Cojocaru D, Bontas I, Topala N (1986) Functionalized crosslinked acrylic copolymers as supports for biologically active proteins. Biotechnol Bioeng 28(2):294–296

    Article  CAS  PubMed  Google Scholar 

  41. Fernandez-Lafuente R, Armisén P, Sabuquillo P, Fernández-Lorente G, Guisán JM (1998) Immobilization of lipases by selective adsorption on hydrophobic supports. Chem Phys Lipid 93(1–2):185–197

    Article  CAS  Google Scholar 

  42. Chong AM, Zhao XS (2004) Design of large-pore mesoporous materials for immobilization of penicillin G acylase biocatalyst. Catal Today 93:293–299

    Article  Google Scholar 

  43. Balliu A, Baltzer L (2017) Exploring non-obvious hydrophobic binding pockets on protein surfaces: Increasing affinities in peptide–protein interactions. ChemBioChem 18(14):1396–1407

    Article  CAS  PubMed  Google Scholar 

  44. He J, Xu Y, Ma H, Zhang Q, Evans DG, Duan X (2006) Effect of surface hydrophobicity/hydrophilicity of mesoporous supports on the activity of immobilized lipase. J Colloid Interface Sci 298(2):780–786

    Article  CAS  PubMed  Google Scholar 

  45. Duan Y, Zou T, Wu S, Cheng H (2022) Immobilization of lipases on modified silica clay for bio-diesel production: the effect of surface hydrophobicity on performance. Catalysts 12(2):242

    Article  CAS  Google Scholar 

  46. Yan Y, Cai Y, Liu X, Ma GW, Lv W, Wang MX (2020) Hydrophobic modification on the surface of SiO2 nanoparticle: wettability control. Langmuir 36(49):14924–14932

    Article  CAS  PubMed  Google Scholar 

  47. Almulaiky YQ, Khalil NM, El-Shishtawy RM, Altalhi T, Algamal Y, Aldhahri M, Mohammed MM (2021) Hydroxyapatite-decorated ZrO2 for α-amylase immobilization: toward the enhancement of enzyme stability and reusability. Int J Biol Macromol 167:299–308

    Article  CAS  PubMed  Google Scholar 

  48. Arana-Peña S, Carballares D, Morellon-Sterling R, Rocha-Martin J, Fernandez-Lafuente R (2022) The combination of covalent and ionic exchange immobilizations enables the coimmobilization on vinyl sulfone activated supports and the reuse of the most stable immobilized enzyme. Int J Biol Macromol 199:51–60

    Article  PubMed  Google Scholar 

  49. Das R, Talat M, Srivastava ON, Kayastha AM (2018) Covalent immobilization of peanut β-amylase for producing industrial nano-biocatalysts: a comparative study of kinetics, stability and reusability of the immobilized enzyme. Food Chem 245:488–499

    Article  CAS  PubMed  Google Scholar 

  50. Li LJ, Xia WJ, Ma GP, Chen YL, Ma YY (2019) A study on the enzymatic properties and reuse of cellulase immobilized with carbon nanotubes and sodium alginate. AMB Express 9(1):112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guo R, Zheng X, Wang Y, Yang Y, Ma Y, Zou D, Liu Y (2021) Optimization of cellulase immobilization with sodium alginate-polyethylene for enhancement of enzymatic hydrolysis of microcrystalline cellulose using response surface methodology. Appl Biochem Biotechnol 193:2043–2060

    Article  CAS  PubMed  Google Scholar 

  52. Zang L, Qiu J, Wu X, Zhang W, Sakai E, Wei Y (2014) Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res 53(9):3448–3454

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2022YFC2104700), the Natural Science Foundation of China (32271806 and 21908124, 32171735), the People’s Livelihood Science and Technology Project of Qingdao (21-1-4-sf-16-nsh), and the Talent Fund of Shandong Collaborative Innovation Center of Eco-Chemical Engineering (XTCX 21978041). The authors are also grateful for the experimental conditions which provided by the Polyphase Fluid Reaction and Separation Engineering Key Laboratory of the Shandong government.

Author information

Authors and Affiliations

Authors

Contributions

HZ: Validation, Data curation, Formal analysis, Investigation, Writing-original draft. YY: Conceptualization, Methodology. RS: Validation, Formal analysis, Investigation. YC: Software, Visualization. GL: Investigation, Methodology. HY: Supervision, Validation, Formal analysis. JP: Validation, Formal analysis. LL: Conceptualization, Methodology, Formal analysis, Writing-review & editing.

Corresponding author

Correspondence to Lu Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yao, Y., Shang, R. et al. Effect of Supporter on the Activity and Stability of Immobilized Cellulase to Hydrolyze Cellulose. Catal Lett 154, 2220–2230 (2024). https://doi.org/10.1007/s10562-023-04467-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04467-z

Keywords

Navigation