Skip to main content
Log in

Construction of p–n Heterojunctions by Co9S8 Modified Rare-Earth Metal Sm-Tungstates for Photocatalytic Hydrogen Evolution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The p–n type Sm2WO6-Co9S8 heterojunction with two-dimensional coupling interface was successfully synthesized by electrostatic self-assembly. The unique rhombic morphology of Sm2WO6 and Co9S8 nanoparticles also effectively improve the light utilization efficiency. The intervention of Co9S8 enhances the visible light absorption capacity of m2WO6/Co9S8. The Sm2WO6/Co9S8 greatly increases the specific surface area and provides a rich reaction site. Recombination of photogenerated carriers in Sm2WO6/Co9S8 heterojunctions is effectively inhibited. The p–n type Sm2WO6-Co9S8 heterojunction results show that the optimized Sm2WO6/Co9S8 heterojunction exhibits significant hydrogen evolution activity, and the optimal Sm2WO6/Co9S8-25 composite has 117.5 μmol hydrogen evolution activity, it’s close to four times Co9S8, close to 143 times Sm2WO6. The stability of the composite Sm2WO6/Co9S8 is the better. Under the built-in electric field induced by p–n heterojunction, using of p–n heterojunction interactions and electron transport modes, the Sm2WO6/Co9S8 can effectively achieve the remarkable effect of its internal carrier separation. This work also provides new opportunities for studying rare earth element tungstate photocatalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang G, Chen W, Zhang Y, Xu Q, Li Y, Foo ML, Tang L (2021) Synthesis of ZnIn2S4@Co3S4 particles derived from ZIF-67 for photocatalytic hydrogen production. RSC Adv 11(16):9296–9302

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Zhou L, Chen FF, Chen J, Feng YN, Li L, Yu Y (2021) Highly dispersive Ni@C and Co@C nanoparticles derived from metal-organic monolayers for enhanced photocatalytic CO2 reduction. Inorg Chem 60(14):10738–10748

    Article  CAS  PubMed  Google Scholar 

  3. Zhao F, Yin D, Khaing KK, Liu B, Chen T, Deng L, Li L, Guo X, Wang J, Xiao S, Ouyang Y, Liu J, Zhang Y (2020) Fabrication of hierarchical Co9S8@ZnAgInS heterostructured cages for highly efficient photocatalytic hydrogen generation and pollutants degradation. Inorg Chem 59(10):7027–7038

    Article  CAS  PubMed  Google Scholar 

  4. Gu S, Wang L, Zhang J (2017) Enhanced visible light photocatalytic activity of flower-Like Bi2WO6 loaded with MnOx. Chin J Chem 35(2):153–158

    Article  CAS  Google Scholar 

  5. Qiu B, Zhu Q, Du M, Fan L, Xing M, Zhang J (2017) Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew Chem Int Ed Engl 56(10):2684–2688

    Article  CAS  PubMed  Google Scholar 

  6. Akhundi A, Habibi-Yangjeh A, Abitorabi M, Rahim Pouran S (2019) Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catal Rev 61(4):595–628

    Article  CAS  Google Scholar 

  7. Akhundi A, Badiei A, Ziarani GM, Habibi-Yangjeh A, Muñoz-Batista MJ, Luque R (2020) Graphitic carbon nitride-based photocatalysts: toward efficient organic transformation for value-added chemicals production. Mol Catal 488:110902

    Article  CAS  Google Scholar 

  8. Jin Z, Li H, Li J (2022) Efficient photocatalytic hydrogen evolution over graphdiyne boosted with a cobalt sulfide formed S-scheme heterojunction. Chin J Catal 43(2):303–315

    Article  CAS  Google Scholar 

  9. Feng T, Qin H, Zhang M (2018) Co@C nanoparticle embedded hierarchically porous N-doped hollow carbon for efficient oxygen reduction. Chemistry 24:10178

    Article  CAS  PubMed  Google Scholar 

  10. Mujtaba J, He L, Zhu H, Xiao Z, Huang G, Solovev AA, Mei Y (2021) Co9S8 nanoparticles for hydrogen evolution. ACS Appl Nano Mater 4(2):1776–1785

    Article  CAS  Google Scholar 

  11. Ma X, Liu Y, Wang Y, Jin Z (2021) Co3O4/CeO2 p–n heterojunction construction and application for efficient photocatalytic hydrogen evolution. Int J Hydrogen Energy 46(68):33809–33822

    Article  CAS  Google Scholar 

  12. Wang Y, Hao X, Zhang L, Jin Z, Zhao T (2021) Amorphous Co3S4 nanoparticle-modified tubular g-C3N4 forms step-scheme heterojunctions for photocatalytic hydrogen production. Catal Sci Technol 11(3):943–955

    Article  CAS  ADS  Google Scholar 

  13. Dai M, He Z, Zhang P, Li X, Wang S (2022) ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution. J Mater Sci Technol 122:231–242

    Article  CAS  Google Scholar 

  14. Arunpandian M, Selvakumar K, Raja A, Rajasekaran P, Ramalingan C, Nagarajan ER, Pandikumar A, Arunachalam S (2020) Rational design of novel ternary Sm2WO6/ZnO/GO nanocomposites: an affordable photocatalyst for the mitigation of carcinogenic organic pollutants. Colloids Surf Physicochem Eng Aspects. https://doi.org/10.1016/j.colsurfa.2020.124721

    Article  Google Scholar 

  15. Liu Y, Xu J, Ding Z, Mao M, Li L (2021) Marigold shaped mesoporous composites Bi2S3/Ni(OH)2 with n-n heterojunction for high efficiency photocatalytic hydrogen production from water decomposition. Chem Phys Lett 766:138337

    Article  CAS  Google Scholar 

  16. Liu Z, Xu J, Liang Q, Li Y, Yu H (2020) CoS/ZnWO4 composite with band gap matching: simple impregnation synthesis, efficient dye sensitization system for hydrogen production. J Nanoparticle Res. https://doi.org/10.1007/s11051-020-04857-

    Article  Google Scholar 

  17. Irfan RM, Tahir MH, Iqbal S, Nadeem M, Bashir T, Maqsood M, Zhao J, Gao L (2021) Co3C as a promising cocatalyst for superior photocatalytic H2 production based on swift electron transfer processes. J Mater Chem C 9(9):3145–3154

    Article  CAS  Google Scholar 

  18. Liu Z, Wang K, Li Y, Yuan S, Huang G, Li X, Li N (2022) Activation engineering on metallic 1T-MoS2 by constructing In-plane heterostructure for efficient hydrogen generation. Appl Catal B Environ 300:10

    Article  Google Scholar 

  19. Dong B, Xie JY, Wang N, Gao WK, Ma Y, Chen TS, Yan XT, Li QZ, Zhou YL, Chai YM (2020) Zinc ion induced three-dimensional Co9S8 nano-neuron network for efficient hydrogen evolution. Renew Energy 157:415–423

    Article  CAS  Google Scholar 

  20. Zhang S, Wang K, Li F, Ho SH (2022) Structure-mechanism relationship for enhancing photocatalytic H2 production. Int J Hydrogen Energy 47(88):37517–37530

    Article  CAS  Google Scholar 

  21. Liu Z, Xu J, Xiang C, Liu Y, Ma L, Hu L (2021) S-scheme heterojunction based on ZnS/CoMoO4 ball-and-rod composite photocatalyst to promote photocatalytic hydrogen production. Appl Surf Sci 569:150973

    Article  CAS  Google Scholar 

  22. Li J, Li M, Jin Z (2021) Rational design of a cobalt sulfide/bismuth sulfide S-scheme heterojunction for efficient photocatalytic hydrogen evolution. J Colloid Interface Sci 592:237–248

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Li YH, Huang JF, Li JY, Cao LY, Lu J, Wu JP (2014) A hydrothermal assisted method to prepare Samarium Tungstate sheets at lowered reaction temperature. Mater Lett 135:168–171

    Article  CAS  Google Scholar 

  24. Mao M, Xu J, Li L, Zhao S, Li X, Li Y, Liu Z (2019) High performance hydrogen production of MoS2-modified perovskite LaNiO3 under visible light. Ionics 25(10):4533–4546

    Article  CAS  Google Scholar 

  25. Liu X, Xu J, Ma L, Liu Y, Hu L (2021) High efficiency hydrogen production with visible light layered MgAl-LDH coupled with CoSx. Chem Phys Lett 784:139124

    Article  CAS  Google Scholar 

  26. Mao M, Xu J, Li J, Zhao S, Li X (2020) Enhancement of catalytic hydrogen evolution by NiS modification of ZnCo2O4 with cubic morphology. J Mater Sci Mater Electron 31(15):12026–12040

    Article  CAS  Google Scholar 

  27. Kumar P, Chand P (2022) Sm3+-BiFeO3 nano catalyst: a synergetic effect of Sm3+ on enhanced multiferroic properties and photocatalysis. J Alloys Compd 891:161896

    Article  CAS  Google Scholar 

  28. Ma L, Xu J, Zhao S, Li L, Liu Y (2021) Construction of CoS2/Zn0.5 Cd0.5 S S-scheme heterojunction for enhancing H2 evolution activity under visible light. Chemistry 27(63):15795–15805

    Article  CAS  PubMed  Google Scholar 

  29. Zhao S, Xu J, Mao M, Li L, Li X (2021) Protonated g-C3N4 cooperated with Co-MOF doped with Sm to construct 2D/2D heterojunction for integrated dye-sensitized photocatalytic H2 evolution. J Colloid Interface Sci 583:435–447

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Xu JY, Gao LF, Hu CX, Zhu ZY, Zhao M, Wang Q, Zhang HL (2016) Preparation of large size, few-layer black phosphorus nanosheets via phytic acid-assisted liquid exfoliation. Chem Commun (Camb) 52(52):8107–8110

    Article  CAS  PubMed  Google Scholar 

  31. Xu J, Zhang L, Shi R, Zhu Y (2013) Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J Mater Chem A 1(46):14766

    Article  CAS  Google Scholar 

  32. Derraji K, Lucena L, Favotto C, Valmalette JC, Villain S, Nolibe G, Lyoussi A, Guinneton F, Gavarri JR (2022) Structural, vibrational and photoluminescence properties of samarium doped cobalt tungstates. J Mol Struct 1254:131983

    Article  CAS  Google Scholar 

  33. Khan S, Choi H, Kim D, Lee SY, Zhu Q, Zhang J, Kim S, Cho SH (2020) Self-assembled heterojunction of metal sulfides for improved photocatalysis. Chem Eng J 395:125092

    Article  CAS  Google Scholar 

  34. Soni V, Singh P, Khan AAP, Singh A, Nadda AK, Hussain CM, Van Le Q, Rizevsky S, Nguyen VH, Raizada P (2022) Photocatalytic transition-metal-oxides-based p–n heterojunction materials: synthesis, sustainable energy and environmental applications, and perspectives. J Nanostruct Chem 13:129

    Article  CAS  Google Scholar 

  35. Patil AS, Patil AV, Dighavkar CG, Adole VA, Tupe UJ (2022) Synthesis techniques and applications of rare earth metal oxides semiconductors: a review. Chem Phys Lett 796:139555

    Article  CAS  Google Scholar 

  36. Zhou J, Zhang J, Zhao J, Wang H, Liu R (2021) Accelerated exciton dissociation and electron extraction across the metallic sulfide–carbon nitride ohmic interface for efficient photocatalytic hydrogen production. J Mater Chem A 9(30):16522–16531

    Article  CAS  Google Scholar 

  37. Guo P, Zhang D, Liu X, Liu W, Wang R, Zhang Z, Qiu S (2022) In situ self-assembly of mesoporous Zn-Cd-Mo-S quaternary metal sulfides with double heterojunction synergistic charge transfer for boosting photocatalytic hydrogen production. J Alloys Compd 921:166066

    Article  CAS  Google Scholar 

  38. Ma X, Lei Z, Wang C, Fu Z, Hu X, Fan J, Liu E (2021) Fabrication of P-doped Co9S8/g-C3N4 heterojunction for excellent photocatalytic hydrogen evolution. Int J Hydrogen Energy 46(74):36781–36791

    Article  CAS  Google Scholar 

  39. Liu Y, Zong L, Zhang C, Liu W, Fakhri A, Gupta VK (2021) Design and structural of Sm-doped SbFeO3 nanopowders and immobilized on poly (ethylene oxide) for efficient photocatalysis and hydrogen generation under visible light irradiation. Surf Interfaces 26:101292

    Article  CAS  Google Scholar 

  40. Ruiz-Gómez MA, Torres-Martínez LM, Figueroa-Torres MZ, Moctezuma E, Juárez-Ramírez I (2013) Hydrogen evolution from pure water over a new advanced photocatalyst Sm2GaTaO7. Int J Hydrogen Energy 38(28):12554–12561

    Article  Google Scholar 

  41. Akhundi A, Zaker Moshfegh A, Habibi-Yangjeh A, Sillanpää M (2022) Simultaneous dual-functional photocatalysis by g-C3N4-based nanostructures. ACS ES&T Eng 2(4):564–585

    Article  CAS  Google Scholar 

  42. Sabri M, Habibi-Yangjeh A, Rahim Pouran S, Wang C (2021) Titania-activated persulfate for environmental remediation: the-state-of-the-art. Catal Rev 65(1):118–173

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Xixia District Science and Technology Plan Project (XXKJ1901) and also was supported by the Central Universities of North University for Nationalities (2021KJCX02). This work was financially supported by the Natural Science Foundation of Ningxia Province (2021AAC03180).

Funding

Funding was provided by Central Universities of North University for Nationalities (Grant No. 2021KJCX02), Xixia District Science and Technology Plan Project (Grant No. XXKJ1901) and Natural Science Foundation of Ningxia Province (Grant No. 2021AAC03180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xu, J., Liu, Z. et al. Construction of p–n Heterojunctions by Co9S8 Modified Rare-Earth Metal Sm-Tungstates for Photocatalytic Hydrogen Evolution. Catal Lett 154, 1322–1335 (2024). https://doi.org/10.1007/s10562-023-04397-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04397-w

Keywords

Navigation