Skip to main content

Advertisement

Log in

High performance hydrogen production of MoS2-modified perovskite LaNiO3 under visible light

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel composite perovskite LaNiO3 photocatalyst modified by MoS2 was synthesized by sol-high temperature calcination. When the molar ratio of La/Ni was 2:1, MoS2 accounts for 3% of the MoS2/LaNiO3 composite catalyst. The hydrogen production activity is up to 47.1 μmol h−1. In the visible range (≥ 420 nm), the hydrogen generation of the composite photocatalyst is increased more than three times that of pure LaNiO3. It is described that the hydrogen production capacity of catalytic materials formed by MoS2-modified LaNiO3 is significantly improved under visible light, the electron and hole pairs are effectively separated, the electron transfer rate is increased, and the recombination of electron and hole pairs is reduced. Furthermore, the experimental results were measured by energy spectrum (XPS), X-ray diffraction (XRD), photoluminescence spectroscopy (PL), scanning electron microscope (SEM), UV–Vis transmission electron microscopy (TEM), and electrochemical workstation. This is consistent with the hydrogen production capacity of the catalyst.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang P, Sihuizhan, Wang H et al (2018) Cobalt phosphide nanowires as efficient co-catalyst for photocatalytic hydrogen evolution over Zn0.5Cd0.5S[J]. Appl Catal B Environ 230:210–219

    Article  CAS  Google Scholar 

  2. Purusottam RB, Chandra SM, Poorna PB et al (2018) Photocatalytic, magnetic, and electrochemical properties of La doped BiFeO3, nanoparticles[J]. Ceram Int 44:19512–19521

    Article  CAS  Google Scholar 

  3. Liu D, Jin Z, Li H et al (2017) Modulation of the excited-electron recombination process by introduce g-C3N4, on Bi-based bimetallic oxides photocatalyst[J]. Applied Surface Science 423:255–265

    Article  CAS  Google Scholar 

  4. Cui Y, Zhang X et al (2019) Construction of BiOCOOH/g-C3N4composite photocatalyst and its enhanced visible light photocatalytic degradation of amido black 10B[J]. Sep Purif Technol 210:125–134

    Article  CAS  Google Scholar 

  5. Zhang J, Zhao Y et al (2019) Density functional theory calculation on facet-dependent photocatalytic activity of MoS2/CdS heterostructures[J]. Appl Surf Sci 469:27–33

    Article  CAS  Google Scholar 

  6. Yong-Jun Y, Zijian L, Shiting W et al (2018) Role of two-dimensional nanointerfaces in enhancing the photocatalytic performance of 2D-2D MoS2/CdS photocatalysts for H2, production[J]. Chem Eng J 350:335–343

    Article  CAS  Google Scholar 

  7. Shen H, Liu G, Yan X, Jiang J, Hong Y, Yan M, Mao B, Li D, Fan W, Shi W (2017) All-solid-state Z-scheme system of RGO-Cu2O/Fe2O3 for simultaneous hydrogen production and tetracycline degradation [J]. Mater Today Energy 5:312–319

    Article  Google Scholar 

  8. Yong-Jun Y, Zhikai S et al (2019) Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2 /g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity [J]. Appl Catal B Environ 246:120–128

    Article  CAS  Google Scholar 

  9. Yong-Jun Y, Yan Y et al (2018) Promoting charge separation in g-C3N4/graphene/MoS2 photocatalysts by two-dimensional nanojunction for enhanced photocatalytic H2 production[J]. ACS Appl Energy Mater 1(4):1400–1407

  10. Gao X, Shang Y, Liu L, Nie W (2019) A plasmonic Z-scheme three-component photocatalyst g-C3N4/Ag/LaFeO3 with enhanced visible-light photocatalytic activities [J]. Opt Mater 88:229–237

    Article  CAS  Google Scholar 

  11. Wang R, Ni S, Liu G, Xu X (2018) Hollow CaTiO3 cubes modified by La/Cr co-doping for efficient photocatalytic hydrogen production[J]. Appl Catal B Environ 225:139–147

    Article  CAS  Google Scholar 

  12. Yan Y, Yang H et al (2018) Enhanced photocatalytic activity of surface disorder-engineered CaTiO3 [J]. Mater Res Bull 105:286–290

    Article  CAS  Google Scholar 

  13. Marchena CL, Pecchi GA, Pierella LB (2019) Selective styrene oxidation on alkaline tantalates ATaO3 (A = Li, Na, K) as heterogeneous catalysts [J]. Catal Commun 119:28–32

    Article  CAS  Google Scholar 

  14. Yang Y, Li F, Li W, Gao W, Wen H, Li J, Hu Y, Luo Y, Li R (2017) Porous CoS2, nanostructures based on ZIF-9 supported on reduced graphene oxide: favourable electrocatalysis for hydrogen evolution reaction[J]. Int J Hydrog Energy 42(10):6665–6673

    Article  CAS  Google Scholar 

  15. Yong-Jun Y, Pei W et al (2019) The role of bandgap and interface in enhancing photocatalytic H2 generation activity of 2D-2D black phosphorus/MoS2 photocatalyst[J]. Appl Catal B Environ 242:1–8

    Article  CAS  Google Scholar 

  16. Zhang S, Zhang G et al (2019) Enhancement of photocatalytic H2 evolution on pyrene-based polymer promoted by MoS2 and visible light [J]. Appl Catal B Environ 251:102–111

    Article  CAS  Google Scholar 

  17. Pokrant S, Dilger S, Landsmann S, Trottmann M (2017) Size effects of cocatalysts in photoelectrochemical and photocatalytic water splitting [J]. Mater Today Energy 5:158–163

    Article  Google Scholar 

  18. Ao Y, Wang K, Wang P, Wang C, Hou J (2016) Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation[J]. Appl Catal B Environ 194:157–168

    Article  CAS  Google Scholar 

  19. Hua E, Jin S, Wang X, Ni S, Liu G, Xu X (2019) Ultrathin 2D type-II p-n heterojunctions La2Ti2O7/In2S3 with efficient charge separations and photocatalytic hydrogen evolution under visible light illumination [J]. Appl Catal B Environ 245:733–742

    Article  CAS  Google Scholar 

  20. Alali KT, Liu T, Liu J, Liu Q, Fertassi MA, Li Z, Wang J (2017) Preparation and characterization of ZnO/CoNiO2, hollow nanofibers by electrospinning method with enhanced gas sensing properties [J]. J Alloys Compd 702:20–30

    Article  CAS  Google Scholar 

  21. Xu J, Yu H, Guo H (2018) Synthesis and behaviors of g-C3N4, coupled with LaXCo3-XO4, nanocomposite for improved photocatalytic activeity and stability under visible light [J]. Mater Res Bull 105:342–348

    Article  CAS  Google Scholar 

  22. Hu J, Cao Y, Xie J, Jia D (2017) Simple solid-state synthesis and improved performance of Ni(OH)2 -TiO2, nanocomposites for photocatalytic H2 production[J]. Ceram Int 43(14):11109–11115

    Article  CAS  Google Scholar 

  23. Xue Z, Shen Y, Li P, Pan Y, Li J, Feng Z, Zhang Y, Zeng Y, Liu Y, Zhu S (2018) Promoting effects of lanthanum oxide on the NiO/CeO2, catalyst for hydrogen production by autothermal reforming of ethanol[J]. Catal Commun 108:12–16

    Article  CAS  Google Scholar 

  24. Yang X, Huang H, Kubota M, He Z, Kobayashi N, Zhou X, Jin B, Luo J (2016) Synergetic effect of MoS2 and g-C3N4 as cocatalysts for enhanced photocatalytic H-2 production activity of TiO2[J]. Mater Res Bull 76:79–84

    Article  CAS  Google Scholar 

  25. Tang Y, Li X, Zhang D, Pu X, Ge B, Huang Y (2019) Noble metal-free ternary MoS2/Zn0.5Cd0.5S/g-C3N4 heterojunction composite for highly efficient photocatalytic H2 production[J]. Mater Res Bull 110:214–222

    Article  CAS  Google Scholar 

  26. Zhao S, Huang J, Huo Q, Zhou X, Tu W (2016) A non-noble metal MoS2–Cd0.5Zn0.5S photocatalyst with efficient activity for high H2 evolution under visible light irradiation[J]. J Mater Chem A 4:193–199

    Article  CAS  Google Scholar 

  27. Song W, Ma S, Sun L, Yang Y et al (2017) Urchin-flower like hierarchical LaNiO3 spheres: structural characteristics and photocatalytic activity[J]. Chem Technol Ind J 12:111–120

    Google Scholar 

  28. Kumar SG, Rao KSRK (2017) Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO) [J]. Appl Surf Sci 391:124–148

    Article  CAS  Google Scholar 

  29. Hao X, Jin Z, Yang H, Lu G, Bi Y (2017) Peculiar synergetic effect of MoS2, quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution[J]. Appl Catal B Environ 210:45–56

    Article  CAS  Google Scholar 

  30. Liu Y, Zhou W, Wang C, Sun L, Wu P (2018) Electronic structure and optical properties of SrTiO3 codoped by W/Mo on different cationic sites with C/N from hybrid functional calculations[J]. Comput Mater Sci 146:150–157

    Article  CAS  Google Scholar 

  31. Huerta-Flores AM, Juárez-Ramírez I, Torres-Martínez LM, Carrera-Crespo JE, Gómez-Bustamante T, Sarabia-Ramos O (2018) Synthesis of AMoO4, (A=Ca, Sr, Ba) photocatalysts and their potential application for hydrogen evolution and the degradation of tetracycline in water [J]. J Photochem Photobiol A Chem 356:29–37

    Article  CAS  Google Scholar 

  32. Yang H, Jin Z, Liu D et al (2018) Visible light harvesting and spatial charge separation over creative Ni/CdS/Co photocatalyst [J]. J Phys Chem C 122(19)

  33. Yang H, Jin Z, Wang G, Liu D, Fan K (2018) Light-assisted synthesis MoSx as a noble metal free cocatalyst formed heterojunction CdS/Co3O4 photocatalyst for visible light harvesting and spatial charge separation[J]. Dalton Trans 47(20):6973–6985

    Article  CAS  PubMed  Google Scholar 

  34. Hai Y, Jing X, Zeying L et al (2018) Functionalization of sheet structure MoS2 with CeO2–Co3O4 for efficient photocatalytic hydrogen evolution[J]. J Mater Sci 53(21):15271–15284

    Article  CAS  Google Scholar 

  35. Li Q, Shi T, Li X, Lv K, Li M, Liu F, Li H, Lei M (2018) Remarkable positive effect of Cd(OH)2, on CdS semiconductor for visible-light photocatalytic H2, production[J]. Appl Catal B Environ 229:8–14

    Article  CAS  Google Scholar 

  36. Hai Y, Jing X, Hao G et al (2017) Synergistic effect of rare earth metal Sm oxides and Co1−xS on sheet structure MoS2 for photocatalytic hydrogen evolution [J]. RSC Adv 7(89):56417–56425

    Article  Google Scholar 

  37. Yongke Z, Zhiliang J, Hong Y et al (2018) Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS p-n heterojunction for efficient photocatalytic hydrogen evolution[J]. Appl Surf Sci 462:213–225

    Article  CAS  Google Scholar 

  38. Wu H, Li C, Che H, Hu H, Hu W, Liu C, Ai J, Dong H (2018) Decoration of mesoporous Co3O4, nanospheres assembled by monocrystal nanodots on g-C3N4, to construct Z-scheme system for improving photocatalytic performance[J]. Appl Surf Sci 440:308–319

    Article  CAS  Google Scholar 

  39. Darsara SA, Seifi M, Askari MB (2018) One-step hydrothermal synthesis of MoS2/CdS nanocomposite and study of structural, photocatalytic, and optical properties of this nanocomposite[J]. Optik 169:249–256

    Article  CAS  Google Scholar 

  40. Qianqian C, Chunran Z, Yan W et al (2018) Synthesis of MoS2 /YVO4, composite and its high photocatalytic performance in methyl orange degradation and H2, evolution[J]. Sol Energy 171:426–434

    Article  CAS  Google Scholar 

  41. Xiaosong Z, Zhihui L, Pingfang T et al (2014) Facile preparation and enhanced photocatalytic H2 -production activity of Cu(OH)2 nanospheres modified porous g-C3N4[J]. Mater Chem Phys 143:1462–1468

    Article  CAS  Google Scholar 

  42. Sun X, Xu X (2017) Efficient photocatalytic hydrogen production over La/Rh co-doped Ruddlesden-Popper compound Sr2TiO4 [J]. Appl Catal B Environ 210:149–159

    Article  CAS  Google Scholar 

  43. Dang H, Cheng Z, Yang W, Chen W, Huang W, Li B, Shi Z, Qiu Y, Dong X, Fan H (2017) Room-temperature synthesis of CuxS (x=1 or 2) co-modified TiO2, nanocomposite and its highly efficient photocatalytic H2, production activity[J]. J Alloys Compd 709:422–430

    Article  CAS  Google Scholar 

  44. Liu Y, Zhou S, Li JM, Wang YJ, Jiang GY, Zhao Z et al (2015) Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity [J]. Appl Catal B Environ 168:125–131

    Article  CAS  Google Scholar 

  45. Li L, Xu J, Ma JP, Liu Z, Li Y (2019) A bimetallic sulfide CuCo2S4 with good synergistic effect was constructed to drive high performance photocatalytic hydrogen evolution [J]. J Colloid Interface Sci 552:17–26

    Article  CAS  PubMed  Google Scholar 

  46. Hao X, Jin Z, Wang F, Xu J, Min S, Yuan H, Lu G (2015) Behavior of borate complex anion on the stabilities and the hydrogen evolutions of ZnxCo3-xO4 decorated grapheme [J]. Superlattice Microst 82:599–611

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Ningxia Province (NZ17262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, M., Xu, J., Li, L. et al. High performance hydrogen production of MoS2-modified perovskite LaNiO3 under visible light. Ionics 25, 4533–4546 (2019). https://doi.org/10.1007/s11581-019-03210-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03210-2

Keywords

Navigation