Skip to main content
Log in

Supported VPO Catalysts for Maleic Anhydride by Atomic Layer Deposition

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The preparation of vanadium-phosphate catalysts by Atomic Layer Deposition (ALD) was studied for application to selective oxidation of n-butane to maleic anhydride (MA). Modification of bulk V2O5 by ALD with trimethylphosphate significantly increased the selectivity to MA but the catalyst performance was still much worse than that observed for bulk vanadium phosphate (VPO). Silica-supported VPO was then prepared by ALD of P and V and compared to a VPO/SiO2 catalyst prepared by impregnation. Raman spectra showed that the ALD-prepared materials were more homogeneous, and temperature-programmed desorption of 2-propanol demonstrated that the VPO phase covered the silica more uniformly when deposited by ALD. However, the bulk VPO catalyst remained the most selective for MA. Possible reasons for why the supported catalysts showed lower performance are discussed and suggestions made for improving these catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bartholomew CH, Farrauto RJ (2005) Catalytic Oxidations of Inorganic and Organic Compounds. In: Fundamentals of Industrial Catalytic Processes. pp 560–634

  2. Contractor RM (1999) Dupont’s CFB technology for maleic anhydride. Chem Eng Sci. 54:5627–5632. https://doi.org/10.1016/S0009-2509(99)00295-X

    Article  CAS  Google Scholar 

  3. Patience GS (2010) Bockrath RE Butane oxidation process development in a circulating fluidized bed. Appl Catal A Gen 376:4–12. https://doi.org/10.1016/j.apcata.2009.10.023

    Article  CAS  Google Scholar 

  4. Zhou G, Shah PR, Montini T et al (2007) Oxidation enthalpies for reduction of ceria surfaces. Surf Sci 601:2512–2519. https://doi.org/10.1016/j.susc.2007.04.238

    Article  ADS  CAS  Google Scholar 

  5. Harding WD, Birkeland KE, Kung HH (1994) Selective oxidation of butane on phosphorus-modified silica supported vanadia catalysts. Catal Letters 28:1–7. https://doi.org/10.1007/BF00812463

    Article  Google Scholar 

  6. Birkeland KE, Babitz SM, Bethke GK et al (1997) Supported VPO Catalysts for Selective Oxidation of Butane. II. Characterization of VPO/SiO2 Catalysts. J Phys Chem B 101:6895–6902. https://doi.org/10.1021/jp962571c

    Article  CAS  Google Scholar 

  7. Overbeek RA, Pekelharing ARCJ, van Dillen AJ, Geus JW (1996) Preparation, characterization and testing of newly developed silica-supported V-P-O catalysts. Appl Catal A Gen 135:231–248. https://doi.org/10.1016/0926-860X(95)00243-X

    Article  CAS  Google Scholar 

  8. Martinez-Lara M, Moreno-Real L, Pozas-Tormo R et al (1992) Catalytic activity of vanadyl phosphate supported on TiO2 (anatase) and SiO2 (silica). Can J Chem 70:5–13. https://doi.org/10.1139/v92-002

    Article  CAS  Google Scholar 

  9. Kuo PS, Yang BL (1989) AlPO4 as a support material for VPO catalysts. J Catal 117:301–310. https://doi.org/10.1016/0021-9517(89)90341-2

  10. Do N-T, Baerns M (1998) Effect of support material on the catalytic performance of V2O5/P2O5 catalysts for the selective oxidation of but-1-ene and furan to maleic anhydride and its consecutive nonselective oxidation: I. Results of Catalytic Testing. Appl Catal 45:1–7. https://doi.org/10.1016/S0166-9834(00)82388-X

    Article  Google Scholar 

  11. Strempel VE, Löffler D, Kröhnert J et al (2015) Enhancing of catalytic properties of vanadia via surface doping with phosphorus using atomic layer deposition. J Vac Sci Technol A 34:01A135. https://doi.org/10.1116/1.4936390

    Article  CAS  Google Scholar 

  12. Onn TM, Zhang S, Arroyo-Ramirez L et al (2017) High-surface-area ceria prepared by ALD on Al2O3 support. Appl Catal B Environ 201:430–437. https://doi.org/10.1016/j.apcatb.2016.08.054

    Article  CAS  Google Scholar 

  13. Wang C, Mao X, Lee JD et al (2018) A characterization study of reactive sites in ALD-synthesized WOx/ZrO2 catalysts. Catalysts 8:292. https://doi.org/10.3390/catal8070292

    Article  CAS  Google Scholar 

  14. Wang C-Y, Kwon O, Gorte RJ, Vohs JM (2022) Synthesis of high-surface area tungstated zirconia by atomic layer deposition on mesoporous silica. Microporous Mesoporous Mater 335:111821. https://doi.org/10.1016/j.micromeso.2022.111821

  15. Nguyen PT, Hoffman RD, Sleight AW (1995) Structure of (VO)2P2O7. Mater Res Bull 30:1055–1063. https://doi.org/10.1016/0025-5408(95)00116-6

    Article  CAS  Google Scholar 

  16. Bakhmutsky K, Wieder NL, Baldassare T et al (2011) A thermodynamic study of the redox properties of supported Co particles. Appl Catal A Gen 397:266–271. https://doi.org/10.1016/j.apcata.2011.03.013

    Article  CAS  Google Scholar 

  17. Wang D, Barteau MA (2001) Kinetics of butane oxidation by a vanadyl pyrophosphate catalyst. J Catal 197:17–25. https://doi.org/10.1006/jcat.2000.3061

    Article  CAS  Google Scholar 

  18. Johnson JW, Johnston DC, Jacobson AJ, Brody JF (1984) Preparation and characterization of vanadyl hydrogen phosphate hemihydrate and its topotactic transformation to vanadyl pyrophosphate. J Am Chem Soc 106:8123–8128. https://doi.org/10.1021/ja00338a020

    Article  CAS  Google Scholar 

  19. Cao T, Kwon O, Lin C et al (2021) Two-dimensional perovskite crystals formed by atomic layer deposition of CaTiO3 on γ-Al2 O3. Nanomaterials 11:2207. https://doi.org/10.3390/nano11092207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Musschoot J, Deduytsche D, Van Meirhaeghe RL, Detavernier C (2009) ALD of vanadium oxide. ECS Trans 25:29. https://doi.org/10.1149/1.3205040

    Article  CAS  Google Scholar 

  21. Deo G, Hardcastle FD, Richards M et al (1990) Raman spectroscopy of vanadium oxide supported on alumina. In: Novel materials in heterogeneous catalysis. American Chemical Society, pp. 29–317

  22. Wachs IE, Jehng J-M, Deo G et al (1996) In situ Raman spectroscopy studies of bulk and surface metal oxide phases during oxidation reactions. Catal Today 32:47–55. https://doi.org/10.1016/S0920-5861(96)00091-0

    Article  CAS  Google Scholar 

  23. Zhang X, Yang D, Liu W, Rui X (2020) VOPO4⋅2H2O: Large-scale synthesis and zinc-ion storage application. Front Energy Res. https://doi.org/10.3389/fenrg.2020.00211

    Article  Google Scholar 

  24. Wang J, Tan S, Xiong F et al (2020) VOPO4·2H2O as a new cathode material for rechargeable Ca-ion batteries. Chem Commun 56:3805–3808. https://doi.org/10.1039/D0CC00772B

    Article  CAS  Google Scholar 

  25. Cao T, Kwon O, Vohs JM, Gorte RJ (2022) LaFeO3 films on SiO2 for supported-Pt catalysts. Int J Green Energy 19:380–388. https://doi.org/10.1080/15435075.2021.1946815

    Article  CAS  Google Scholar 

  26. Luo J, Yu J, Gorte RJ et al (2014) The effect of oxide acidity on HMF etherification. Catal Sci Technol 4:3074–3081. https://doi.org/10.1039/C4CY00563E

    Article  CAS  Google Scholar 

  27. Huang R, Chang J, Choi H et al (2022) Furfural upgrading by aldol condensation with ketones over solid-base catalysts. Catal Letters. https://doi.org/10.1007/s10562-022-03960-1

    Article  Google Scholar 

  28. Shen K, Fan M, Kwon O et al (2023) Reversible perovskite-fluorite phase transition in alumina-supported CeFeOx films. J Mater Chem A 11:4183–4193. https://doi.org/10.1039/D2TA06215A

    Article  CAS  Google Scholar 

  29. Shen K, Fan M, Rai RK et al (2023) Structure and redox properties of CeMnO3 thin films. J Solid State Chem 323:124055. https://doi.org/10.1016/j.jssc.2023.124055

    Article  CAS  Google Scholar 

  30. Fan M, Ji Y, Lawal A et al (2022) Site and structural requirements for the dehydra-decyclization of cyclic ethers on ZrO2. Catalysts 12:902. https://doi.org/10.3390/catal12080902

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jian Chang acknowledges support from the Vagelos Institute for Energy Science Technology at the University of Pennsylvania. Additional support was provided by the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award number DE-SC0001004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Vohs.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 448 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Gorte, R.J. & Vohs, J.M. Supported VPO Catalysts for Maleic Anhydride by Atomic Layer Deposition. Catal Lett 154, 1072–1080 (2024). https://doi.org/10.1007/s10562-023-04373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04373-4

Keywords

Navigation