Skip to main content
Log in

Improved Supported Metal Oxides for the Oxidative Dehydrogenation of Propane

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The oxidative dehydrogenation of propane (ODHP) is an attractive reaction for the on-purpose production of propylene. Unfortunately, rapid consecutive over-oxidation of the desired olefin limits the selectivity and hampers the industrial feasibility. Supported metal oxides, and in particular dispersed vanadium-containing materials, have shown promising results. Yet one has to improve both the selectivity and activity (space–time–yield) to make this reaction attractive. In this contribution we build upon our previous work that allowed us to increase the dispersion of group V metal oxides on silica using a sodium promoter. Using Raman spectroscopy and 51V MAS NMR, we postulate that the minor decrease in our observed turnover frequency (TOF) for ODHP using sodium-promoted materials may be due to Na+ ions weakly interacting with the V=O site, responsible for the initial H-atom abstraction. While our observed TOF is well within the range of literature reported TOF for these materials, such a large deviation in reported TOF (varying almost three orders of magnitude) may be due to various impurities used in the silica of these previously reported studies. Subsequently, we prepared a ternary metal oxide catalyst based on vanadium and tantalum that shows superior selectivity and productivity. Indeed, productivity of a combined V- and Ta-oxide catalyst supported on silica doubles the productivity of catalysts with low loadings of vanadium oxide supported on silica. The reasons for the significant improvement are currently under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rightor EG, Tway CL (2015) Catal Today 258:226–229

    Article  CAS  Google Scholar 

  2. The Rising Competitive Advantage of US Plastics (2015) Economics and Statistics Department American Chemistry Council. http://plastics.americanchemistry.com/Education-Resources/Publications/The-Rising-Competitive-Advantage-of-US-Plastics.pdf. Accessed 15 Oct 2015

  3. Trends in Refining (2009) UOP LLC, PedroTech, New Delhi, India

  4. Sattler J, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613–10653

    Article  CAS  Google Scholar 

  5. Cavani F, Ballarini N, Cericola A (2007) Catal Today 127:113–131

    Article  CAS  Google Scholar 

  6. Carrero CA, Schloegl R, Wachs IE, Schomaecker R (2014) ACS Catal 4:3357–3380

    Article  CAS  Google Scholar 

  7. Schwartz O, Habel D, Otsiter O, Kondratenko EV, Hess C, Schomaecker R, Schubert H (2008) J Mol Catal A Chem 293:45–52

    Article  Google Scholar 

  8. Carrero CA, Keturakis C, Orrego A, Schomaecker R, Wachs IE (2013) Dalton Trans 42:12644–12653

    Article  CAS  Google Scholar 

  9. Kondratenko EV, Cherian M, Baerns M (2006) Catal Today 112:60–63

    Article  CAS  Google Scholar 

  10. Kondratenko EV, Cherian M, Baerns M, Su D, Schloegl R, Xiang W, Wachs IE (2005) J Catal 234:131–142

    Article  CAS  Google Scholar 

  11. Takehira K, Oshishi Y, Shishido T, Kawabata T, Takaki K, Zhang Q, Wang Y (2014) J Catal 224:404–416

    Article  Google Scholar 

  12. Shishido T, Shimamura K, Teramura K, Tanaka T (2012) Catal Today 185:151–156

    Article  CAS  Google Scholar 

  13. Chen K, Bell AT, Iglesia E (2000) J Phys Chem B 104:1292–1299

    Article  CAS  Google Scholar 

  14. Argyl MD, Chen K, Bell AT, Iglesia E (2002) J Catal 208:139–149

    Article  Google Scholar 

  15. Malleswara RTV, Deo G (2007) AIChE 53:1538–1549

    Article  Google Scholar 

  16. Dinse A, Frank B, Hess C, Habel D, Schomaecker R (2008) J Mol Catal A Gen 289:28–37

    Article  CAS  Google Scholar 

  17. Carrero CA, Kauer M, Dinse A, Wolfram T, Hamilton N, Trunschke A, Schloegl R, Schomaecker R (2014) Catal Sci Technol 4:786–794

    Article  CAS  Google Scholar 

  18. Grant JT, Carrero CA, Love AM, Verel R, Hermans I (2015) ACS Catal 5:5787–5793

    Article  CAS  Google Scholar 

  19. Lemonidou AA, Nalbandian L, Vasalos I (2000) Catal Today 61:333–341

    Article  CAS  Google Scholar 

  20. Garcia Cortez G, Fierro JLG, Banares MA (2003) Catal Today 78:219–228

    Article  CAS  Google Scholar 

  21. Li Y, Wei Z, Sun J, Gao F, Peden CHF, Wang YJ (2013) J Phys Chem C 117:5722–5729

    Article  CAS  Google Scholar 

  22. Tian H, Ross EI, Wachs IE (2006) J Phys Chem B 110:9593–9600

    Article  CAS  Google Scholar 

  23. Gao X, Bare SR, Weckhuysen BM, Wachs IE (1998) J Phys Chem B 102:10842–10852

    Article  CAS  Google Scholar 

  24. Das N, Eckert H, Hu H, Wachs IE, Walzer JF, Feher FJ (1993) J Phys Chem 97:8240–8243

    Article  CAS  Google Scholar 

  25. McGregor J (2009) In: Jackson SD, Hargreaves JSJ (eds) Metal oxide catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 195–242

  26. Hu JZ, Xu S, Li W, Hu MY, Deng X, Dixon DA, Vasiliu M, Cracium R, Wang Y, Bao X, Peden CHF (2015) ACS Catal 5:3945–3952

    Article  CAS  Google Scholar 

  27. Jehng J, Tung W, Huang C, Wachs IE (2007) Microporous Mesoporous Mater 99:299–307

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the University of Wisconsin-Madison, as well as the Wisconsin Alumni Research Foundation (WARF). Martin Martinez is acknowledged for his help with surface area measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ive Hermans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grant, J.T., Love, A.M., Carrero, C.A. et al. Improved Supported Metal Oxides for the Oxidative Dehydrogenation of Propane. Top Catal 59, 1545–1553 (2016). https://doi.org/10.1007/s11244-016-0671-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0671-2

Keywords

Navigation