Skip to main content
Log in

Hierarchical Vanadia Model Catalysts for Ammonia Selective Catalytic Reduction

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

There is an ongoing debate on the structure of titania supported vanadia used for catalytic partial oxidation reactions as well as for abatement of nitrogen oxide (NOx) by ammonia selective catalytic reduction (NH3-SCR). To gain further insight into the essential features of the catalyst composition of the surface we introduce a new class of vanadia model catalysts based on monodispersed silica particles as a platform. The evaluation of the influence of different catalyst components (TiO2, WO3) and different vanadia synthesis approaches (incipient wetness, ion-exchange) is facilitated by the hierarchical structure of the catalysts as well as the controlled synthesis approach. Catalysts tested under industrial ammonia SCR conditions show a strong dependence on the catalyst composition. In particular, the presence of crystalline titania and tungsta leads to a strong increase in NO conversion. Detailed catalyst characterization by X-ray diffraction and by visible Raman, UV Raman, UV–Vis and X-ray photoelectron spectroscopies provides insight into the bulk structure, the surface composition as well as the vanadia surface structure of the catalysts. The potential of UV resonance Raman spectroscopy for structural analysis of vanadia model catalysts for SCR is highlighted. Differences in catalytic activity are discussed in light of the structural results and the available literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The subtraction of the crystalline contributions was performed as part of a fit analysis taking the TiO2- and WO3-related peaks in the spectra of VOx/TiO2/SiO2 (iwi) and VOx/WO3/TiO2/SiO2 (iwi) as a basis.

References

  1. Bosch H, Janssen F (1988) Catal Today 2(4):369–521

    Article  CAS  Google Scholar 

  2. Gabrielsson P, Pedersen HG (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  3. Amiridis MD, Duevel RV, Wachs IE (1999) Appl Catal B 20:111–122

    Article  CAS  Google Scholar 

  4. Dumesic JA, Topsøe NY, Topsøe H, Chen Y, Slabiak T (1996) J Catal 163:409–417

    Article  CAS  Google Scholar 

  5. Inomata M, Miyamoto A, Murakami Y (1980) J Catal 62:140–148

    Article  CAS  Google Scholar 

  6. Ramis G, Busca G, Bregani F, Forzatti P (1990) Appl Catal 64:259–278

    Article  CAS  Google Scholar 

  7. Scharf U, Schraml-Marth M, Wokaun A, Baiker A (1991) J Chem Soc Faraday Trans 87:3299–3307

    Article  CAS  Google Scholar 

  8. Sorrentino A, Rega S, Sannino D, Magliano A, Ciambelli P, Santacesaria E (2001) Appl Catal A 209:45–57

    Article  CAS  Google Scholar 

  9. Sobel N, Hess C (2015) Angew Chem Int Ed 54:15014–15021

    Article  CAS  Google Scholar 

  10. Chlosta R, Tzolova-Müller G, Schlögl R, Hess C (2011) Catal Sci Technol 1:1175–1181

    Article  CAS  Google Scholar 

  11. Hess C (2009) ChemPhysChem 10:319–326

    Article  CAS  Google Scholar 

  12. Chlosta R, Tzolova-Müller G, Schomäcker R, Schlögl R, Hess C (2011) Catal Sci Technol 1:1175–1181

    Article  CAS  Google Scholar 

  13. Thielemann JP, Hess C (2013) ChemPhysChem 14:441–447

    Article  CAS  Google Scholar 

  14. Nitsche D, Hess C (2013) J Raman Spectrosc 44:1733–1738

    Article  CAS  Google Scholar 

  15. Martínez-Huerta MV, Fierro JLG, Bañares MA (2009) Catal Commun 11:15–19

    Article  Google Scholar 

  16. Wachs IE (1996) Catal Today 27:437–455

    Article  CAS  Google Scholar 

  17. Gao X, Bare SR, Fierro JLG, Bañares MA, Wachs IE (1998) J Phys Chem B 102:5653–5666

    Article  CAS  Google Scholar 

  18. Nitsche D, Hess C (2016) J Phys Chem C 120:1025–1037

    Article  CAS  Google Scholar 

  19. Barton DJ, Shtein M, Wilson RD, Soled SL, Iglesia E (1999) J Phys Chem B 103:630–640

    Article  CAS  Google Scholar 

  20. Brinker CJ, Kirkpatrick R, Tallant DR, Bunker BC, Montez B (1988) J Non-Cryst Solids 99:418–428

    Article  CAS  Google Scholar 

  21. Tallant DR, Bunker BC, Brinker CJ, Balfe CA (1986) Mater Res Soc Symp Proc 73:261–267

    Article  CAS  Google Scholar 

  22. Brinker BC, Tallant DR, Roth EP, Ashley CS (1986) Mater Res Soc Symp Proc 61:387–412

    Article  CAS  Google Scholar 

  23. Mestl G, Knözinger H (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  24. Hess C, Tzolova-Müller G, Herbert R (2007) J Phys Chem C 111:9471–9479

    Article  CAS  Google Scholar 

  25. Daniel MF, Desbat B, Lassegues JC, Gerand B, Fjglarz M (1987) J Solid State Chem 67:235–247

    Article  CAS  Google Scholar 

  26. Zhang J, Li MJ, Feng ZC, Chen J, Li C (2006) J Phys Chem B 110:927–935

    Article  CAS  Google Scholar 

  27. Borodko Y, Ager JW III, Marti GE, Song H, Niesz K, Somorjai GA (2005) J Phys Chem B 109:17386–17390

    Article  CAS  Google Scholar 

  28. Vuurman MA, Wachs IE, Hirt AM (1991) J Phys Chem 95:9928–9937

    Article  CAS  Google Scholar 

  29. Tian F, Zhang Y, Zhang J, Pan C (2012) J Phys Chem C 116:7515–7519

    Article  CAS  Google Scholar 

  30. Wark M, Brückner A, Liese T, Grünert W (1998) J Catal 175:48–61

    Article  CAS  Google Scholar 

  31. Alemany LJ, Lietti L, Ferlazzo N, Forzatti P, Busca G, Giamello E, Bregani F (1995) J Catal 155:117–130

    Article  CAS  Google Scholar 

  32. Broclawik E, Góra A, Najbar M (2001) J Mol Catal A 166:31–38

    Article  CAS  Google Scholar 

  33. Lietti L, Alemany JL, Forzatti P, Busca G, Ramis G, Giamello E, Bregani F (1996) Catal Today 29:143–148

    Article  CAS  Google Scholar 

  34. Kompio PGWA, Brückner A, Hipler F, Auer G, Löffler E, Grünert W (2012) J Catal 286:237–247

    Article  CAS  Google Scholar 

  35. Christiani C, Forzatti P, Busca G (1989) J Catal 116:586–589

    Article  Google Scholar 

  36. Dines TJ, Rochester CH, Ward AM (1991) J Chem Soc Faraday Trans 87:653–656

    Article  CAS  Google Scholar 

  37. Deo G, Turek AM, Wachs IE, Machej T, Haber J, Das N, Eckert H, Hirt AM (1992) Appl Catal A 91:27–41

    Article  CAS  Google Scholar 

  38. Waleska PS, Hess C (2016) J Phys Chem C 120:18510–18519

    Article  CAS  Google Scholar 

  39. Giakoumelou J, Fountsoula C, Kordulis C, Boghosian S (2006) J Catal 239:1–12

    Article  CAS  Google Scholar 

  40. Arnarson L, Rasmussen SB, Falsig H, Lauritsen JV, Moses PJ (2015) J Phys Chem C 119:23445–23452

    Article  CAS  Google Scholar 

  41. Hess C (2011) In: Hess C, Schlögl R (eds) Nanostructured catalysts: selective oxidations. RSC, Cambridge

    Chapter  Google Scholar 

  42. Günther T, Carvalho HWP, Doronkin DE, Sheppard T, Glatzel P, Atkins AJ, Rudolph AJ, Jacob CR, Casapu M, Grunwaldt J-D (2015) Chem Commun 51:9227–9230

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Karl Kopp, Nicolas Sobel, and Anastasia Filtschew for help with the ALD coatings, some of the spectroscopic experiments, and technical support. The authors also thank Jean-Christophe Jaud (TU Darmstadt) from the research group of Wolfgang Donner (TU Darmstadt) for performing the XRD experiments and Gitte Marquardt (Haldor Topsøe) for performing the activity measurements. C.H. gratefully acknowledges the Alexander von Humboldt-Foundation for supporting his stay at Haldor Topsøe.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Hess or Søren B. Rasmussen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1372 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hess, C., Waleska, P., Ratzka, M. et al. Hierarchical Vanadia Model Catalysts for Ammonia Selective Catalytic Reduction. Top Catal 60, 1631–1640 (2017). https://doi.org/10.1007/s11244-017-0843-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0843-8

Keywords

Navigation