Skip to main content
Log in

Carbon Dioxide Cycloaddition to Epoxides: A Comparative Study on the Catalytic Activities of Two Binary Catalysts VIVO(N2O2)/TBAB and VVO2(O2N)/TBAB and In Situ Derivation of a Bifunctional Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A comparative study is illustrated on the catalytic activities of two structurally very different vanadium complexes, one oxovanadium(IV) complex 1, VIVO(N2O2) and the other dioxovanadium(V) complex 2, VVO2(O2N) for the carbon dioxide cycloaddition to epoxides to yield cyclic carbonates. The binary catalyst, 1/TBAB is found to be non-selective towards the size of the epoxide substrates showing 90–100% conversions to cyclic carbonate products under the reaction conditions [60 °C, 5 bar (pCO2),  4 h]. However, the other binary catalyst, 2/TBAB having bulky tetrabutylammonium counter cation, could show selectivity resulting only 52% (allyl glycidyl ether), 63% (butyl glycidyl ether) and 54% (1-hexene oxide) conversions for longer tailed epoxides, on contrary to the  99% (epibromohydrin) and  88% (epichlorohydrin) conversions for shorter tailed epoxides. Further, taking the advantage of the modifiability of bromo functional group to imidazolium bromide functionality, the bromo functional group containing oxovanadium(IV) complex 1 has been affixed with imidazolium bromide functionality on reaction with N-methyl imidazole, and thus transformed to a bifunctional catalyst, 1A•Br. This in situ formed bifunctional catalyst, 1A•Br during the course of catalytic reaction, also showed to be an active catalyst system resulting in 100% conversion under the reaction conditions [60 °C, 5 bar (pCO2), 12 h].

Graphical Abstract

VIVO(N2O2) shows no substrate discrimination in the cycloaddition of CO2 to epoxides, while anionic VVO2(O2N) having bulky tetrabutyl ammonium counter cation shows. Low conversions to cyclic carbonates are found for epoxides with longer tails compared to shorter tailed ones, when VVO2(O2N) is employed as a catalyst component. In situ modification of bromo functionalised ligand containing complex VIVO(N2O2) to a bifunctional catalyst via introducing imidazoliumbromide functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Ahmed R, Liu G, Yousaf B, Abbas Q, Ullah H, Ali MU (2020) Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation-A Review. J Clean Prod 242:118409

    Article  CAS  Google Scholar 

  2. Qazvini OT, Babarao R, Telfer SG (2021) Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework. Nat Commun 12:1–8

    Article  Google Scholar 

  3. Wang X, Zhang F, Lipiński W (2020) Research progress and challenges in hydrate-based carbon dioxide capture applications. Appl Energy 269:114928

    Article  CAS  Google Scholar 

  4. Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA, Hallett JP, Herzog HJ, Jackson G, Kemper J, Krevor S, Maitland GC, Matuszewski M, Metcalfe IS, Petit C, Puxty G, Reimer J, Reiner DM, Rubin ES, Scott SA, Shah N, Smit B, Martin Trusler JP, Webley P, Wilcox J, Mac Dowell N (2018) Carbon capture and storage (CCS): the way forward. Energy Environ Sci 11:1062–1176

    Article  CAS  Google Scholar 

  5. MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CK, Shah N, Fennell P (2010) An overview of CO2 capture technologies. Energy Environ Sci 3:1645–1669

    Article  CAS  Google Scholar 

  6. Nozaki K (2021) New polymers made from carbon dioxide and alkenes. Bull Chem Soc Jpn 94:984–988

    Article  CAS  Google Scholar 

  7. Aomchad V, Cristòfol À, Della Monica F, Limburg B, D’Elia V, Kleij AW (2021) Recent progress in the catalytic transformation of carbon dioxide into biosourced organic carbonates. Green Chem 23:1077–1113

    Article  CAS  Google Scholar 

  8. Samanta S, Srivastava R (2020) Catalytic conversion of CO2 to chemicals and fuels: the collective thermocatalytic/photocatalytic/electrocatalytic approach with graphitic carbon nitride. Mater Adv 1:1506–1545

    Article  CAS  Google Scholar 

  9. Tappe NA, Reich RM, D’Elia V, Kühn FE (2018) Current advances in the catalytic conversion of carbon dioxide by molecular catalysts: an update. Dalton Trans 47:13281–13313

    Article  CAS  PubMed  Google Scholar 

  10. Otto A, Grube T, Schiebahn S, Stolten D (2015) Closing the loop: captured CO2 as a feedstock in the chemical industry. Energy Environ Sci 8:3283–3297

    Article  CAS  Google Scholar 

  11. Sharifian R, Wagterveld RM, Digdaya IA, Xiang C, Vermaas DA (2021) Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ Sci 14:781–814

    Article  CAS  Google Scholar 

  12. Pescarmona PP (2021) Cyclic carbonates synthesised from CO2: applications, challenges and recent research trends. Curr Opin Green Sustain Chem 29:100457

    Article  CAS  Google Scholar 

  13. Claver C, Bin Yeamin M, Reguero M, Masdeu-Bultó AM (2020) Recent advances in the use of catalysts based on natural products for the conversion of CO2 into cyclic carbonates. Green Chem 22:7665–7706

    Article  CAS  Google Scholar 

  14. Lopes EJC, Ribeiro APC, Martins LMDRS (2020) New trends in the conversion of CO2 to cyclic carbonates. Catalysts 10:479

    Article  CAS  Google Scholar 

  15. Monfared A, Mohammadi R, Hosseinian A, Sarhandi S, Kheirollahi Nezhad PD (2019) Cycloaddition of atmospheric CO2 to epoxides under solvent-free conditions: a straightforward route to carbonates by green chemistry metrics. RSC Adv 9:3884–3899

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. North M, Pasquale R, Young C (2010) Synthesis of cyclic carbonates from epoxides and CO2. Green Chem 12:1514–1539

    Article  CAS  Google Scholar 

  17. Darensbourg DJ, Holtcamp MW (1996) Catalysts for the reactions of epoxides and carbon dioxide. Coord Chem Rev 153:155–174

    Article  CAS  Google Scholar 

  18. Rasool MA, Pescarmona PP, Vankelecom IFJ (2019) Applicability of organic carbonates as green solvents for membrane preparation. ACS Sustain Chem Eng 7:13774–13785

    Article  CAS  Google Scholar 

  19. Schäffner B, Schäffner F, Verevkin SP, Börner A (2010) Organic carbonates as solvents in synthesis and catalysis. Chem Rev 110:4554–4581

    Article  PubMed  Google Scholar 

  20. Vivek JP, Berry N, Papageorgiou G, Nichols RJ, Hardwick LJ (2016) Mechanistic Insight into the superoxide induced ring opening in propylene carbonate based electrolytes using in situ surface-enhanced infra-red spectroscopy. J Am Chem Soc 138:3745–3751

    Article  CAS  PubMed  Google Scholar 

  21. Aravindan V, Gnanaraj J, Madhavi S, Liu HK (2011) Lithium–Ion conducting electrolyte salts for lithium batteries. Chem Eur J 17:14326–14346

    Article  CAS  PubMed  Google Scholar 

  22. Besse V, Camara F, Voirin C, Auvergne R, Caillol S, Boutevin B (2013) Synthesis and applications of unsaturated cyclocarbonates. Polym Chem 4:4545–4561

    Article  CAS  Google Scholar 

  23. Maisonneuve L, Lamarzelle O, Rix E, Grau E, Cramail H (2015) Isocyanate-free routes to polyurethanes and Poly(hydroxy Urethane)s. Chem Rev 115:12407–12439

    Article  CAS  PubMed  Google Scholar 

  24. Carini DJ, Ardecky RJ, Ensinger CL, Pruitt JR, Wexler RF, Wong PC, Huang S, Aungst BJ, Timmermans PBMWM (1994) Nonpeptide angiotensin II receptor antagonists: the discovery of DMP 581 and DMP 811. Bioorg Med Chem 4:63–68

    Article  CAS  Google Scholar 

  25. Gauthier JY, Leblanc Y, Black WC, Chan CC, Cromlish WA, Gordon R, Kennedey BP, Lau CK, Léger S, Wang Z, Ethier D, Guay J, Mancini J, Riendeau D, Tagari P, Vickers P, Wong E, Xu L, Prasit P (1996) Synthesis and biological evaluation of 2,3-diarylthiophenes as selective Cox-2 inhibitors. Part II: replacing the heterocycle. Bioorg Med Chem Lett 6:87–92

    Article  Google Scholar 

  26. Bobbink FD, Menoud F, Dyson PJ (2018) Synthesis of methanol and diols from CO2 via cyclic carbonates under metal-free, ambient pressure, and solvent-free conditions. ACS Sustainable Chem Eng 6:12119–12123

    Article  CAS  Google Scholar 

  27. Guo W, Gómez JE, Cristòfol À, Xie J, Kleij AW (2018) Catalytic transformations of functionalized cyclic organic carbonates. Angew Chem Int Ed 57:13735–13747

    Article  CAS  Google Scholar 

  28. Davis RA, Andjic V, Kotiw M, Shivas RG (2005) Phomoxins B and C: polyketides from an endophytic fungus of the genus Eupenicillium. Phytochemistry 66:2771–2775

    Article  CAS  PubMed  Google Scholar 

  29. Liu Z, Jensen PR, Fenical W (2003) A cyclic carbonate and related polyketides from a marine-derived fungus of the genus Phoma. Phytochemistry 64:571–574

    Article  CAS  PubMed  Google Scholar 

  30. Zhang F, Bulut S, Shen X, Dong M, Wang Y, Cheng X, Liu H, Han B (2021) Halogen-free fixation of carbon dioxide into cyclic carbonates via bifunctional organocatalysts. Green Chem 23:1147–1153

    Article  CAS  Google Scholar 

  31. Li YD, Cui DX, Zhu JC, Huang P, Tian Z, Jia YY, Wang PA (2019) Bifunctional phase-transfer catalysts for fixation of CO2 with epoxides under ambient pressure. Green Chem 21:5231–5237

    Article  CAS  Google Scholar 

  32. Lang XD, Yu YC, He LN (2016) Zn-salen complexes with multiple hydrogen bonding donor and protic ammonium bromide: Bifunctional catalysts for CO2 fixation with epoxides at atmospheric pressure. J Mol Catal A Chem 420:208–215

    Article  CAS  Google Scholar 

  33. Shang H, Bai S, Yao J, Ma S, Sun J, Su H, Wu X (2021) Bifunctional catalysts containing Zn(II) and imidazolium salt ionic liquids for chemical fixation of carbon dioxide. Chem Asian J 16:224–231

    Article  CAS  PubMed  Google Scholar 

  34. Luo R, Chen Y, He Q, Lin X, Xu Q, He X, Zhang W, Zhou X, Ji H (2017) Metallosalen-based ionic porous polymers as bifunctional catalysts for the conversion of CO2 into valuable chemicals. Chemsuschem 10:1526–1533

    Article  CAS  PubMed  Google Scholar 

  35. Liu TT, Liang J, Huang YB, Cao R (2016) A bifunctional cationic porous organic polymer based on a Salen-(Al) metalloligand for the cycloaddition of carbon dioxide to produce cyclic carbonates. Chem Commun 52:13288–13291

    Article  CAS  Google Scholar 

  36. Das A, Mondal RK, Chakrabortty P, Riyajuddin S, Chowdhury AH, Ghosh S, Khan A, Ghosh K, Islam SM (2021) Visible light assisted chemical fixation of atmospheric CO2 into cyclic Carbonates using covalent organic framework as a potential photocatalyst. Mol Catal 499:111253

    Article  CAS  Google Scholar 

  37. Dhankhar SS, Nagaraja CM (2020) Porous nitrogen-rich covalent organic framework for capture and conversion of CO2 at atmospheric pressure conditions. Microporous Mesoporous Mater 308:110314

    Article  CAS  Google Scholar 

  38. Pal TK, De D, Bharadwaj PK (2020) Metal–organic frameworks for the chemical fixation of CO2 into cyclic carbonates. Coord Chem Rev 408:213173

    Article  CAS  Google Scholar 

  39. Zhai G, Liu Y, Lei L, Wang J, Wang Z, Zheng Z, Wang P, Cheng H, Dai Y, Huang B (2021) Light-promoted CO2 conversion from epoxides to cyclic carbonates at ambient conditions over a bi-based metal-organic framework. ACS Catal 11:1988–1994

    Article  CAS  Google Scholar 

  40. Liu S, Gao M-L, Zhang Y, Liu L, Han Z-B (2021) Trifunctional metal-organic framework catalyst for CO2 conversion into cyclic carbonates. Inorg Chem 60:6152–6156

    Article  CAS  PubMed  Google Scholar 

  41. Liu TT, Liang J, Xu R, Huang YB, Cao R (2019) Salen-Co(III) insertion in multivariate cationic metal–organic frameworks for the enhanced cycloaddition reaction of carbon dioxide. Chem Commun 55:4063–4066

    Article  CAS  Google Scholar 

  42. Shukla SK, Khokarale SG, Bui TQ, Mikkola JPT (2019) Ionic liquids: potential materials for carbon dioxide capture and utilization. Front Mater 6:1–8

    Article  Google Scholar 

  43. Xu BH, Wang JQ, Sun J, Huang Y, Zhang JP, Zhang XP, Zhang SJ (2015) Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach. Green Chem 17:108–122

    Article  CAS  Google Scholar 

  44. Suleman S, Younus HA, Ahmad N, Khattak ZAK, Ullah H, Chaemchuen S, Verpoort F (2019) CO2 insertion into epoxides using cesium salts as catalysts at ambient pressure. Catal Sci Technol 9:3868–3873

    Article  CAS  Google Scholar 

  45. Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K (1999) Mg−Al mixed oxides as highly active acid−base catalysts for cycloaddition of carbon dioxide to epoxides. J Am Chem Soc 121:4526–4527

    Article  CAS  Google Scholar 

  46. Tong H, Qu Y, Li Z, He J, Zou X, Zhou Y, Duan T, Liu B, Sun J, Guo K (2022) Halide-free pyridinium saccharinate binary organocatalyst for the cycloaddition of CO2 into epoxides. Chem Eng J 444:135478

    Article  CAS  Google Scholar 

  47. Guo L, Lamb KJ, North M (2021) Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chem 23:77–118

    Article  CAS  Google Scholar 

  48. Fiorani G, Guo W, Kleij AW (2015) Sustainable conversion of carbon dioxide: the advent of organocatalysis. Green Chem 17:1375–1389

    Article  CAS  Google Scholar 

  49. Steinbauer J, Kubis C, Ludwig R, Werner T (2018) Mechanistic study on the addition of CO2 to epoxides catalyzed by ammonium and phosphonium salts: a combined spectroscopic and kinetic approach. ACS Sustain Chem Eng 6:10778–10788

    Article  CAS  Google Scholar 

  50. Prasad D, Patil KN, Chaudhari NK, Kim H, Nagaraja BM, Jadhav AH (2020) Paving way for sustainable earth-abundant metal based catalysts for chemical fixation of CO2 into epoxides for cyclic carbonate formation. Catal Rev 64:356–443

    Article  Google Scholar 

  51. Zhang Z, Wang T, Xiang P, Du Q, Han S (2021) Syntheses, characterization, and application of tridentate phenoxyimino-phenoxy aluminum complexes for the coupling of terminal epoxide with CO2: from binary system to single component catalyst. Catalysts 11:145

    Article  CAS  Google Scholar 

  52. Whiteoak CJ, Kielland N, Laserna V, Escudero-Adán EC, Martin E, Kleij AW (2013) A powerful aluminum catalyst for the synthesis of highly functional organic carbonates. J Am Chem Soc 135:1228–1231

    Article  CAS  PubMed  Google Scholar 

  53. Kang Y, Wang B, Nan R, Li Y, Zhu Z, Xiao XQ (2022) Cyclic carbonate synthesis from epoxides and CO2 catalyzed by Aluminum–Salen complexes bearing a nido-C2B9 carborane ligand. Inorg Chem 61:8806–8814

    Article  CAS  PubMed  Google Scholar 

  54. Kiriratnikom J, Laiwattanapaisarn N, Vongnam K, Thavornsin N, Sae-Ung P, Kaeothip S, Euapermkiati A, Namuangruk S, Phomphrai K (2021) Highly active chromium complexes supported by constrained Schiff-base ligands for cycloaddition of carbon dioxide to epoxides. Inorg Chem 60:6147–6151

    Article  CAS  PubMed  Google Scholar 

  55. Pradhan HC, Mantri S, Maharana T, Sutar AK (2020) Cobalt(II) complex-catalyzed solventless coupling of CO2 and epoxides. Chem Pap 74:3423–3430

    Article  CAS  Google Scholar 

  56. Khattak ZAK, Younus HA, Ahmad N, Ullah H, Suleman S, Hossain MS, Elkadi M, Verpoort F (2019) Highly active dinuclear cobalt complexes for solvent-free cycloaddition of CO2 to epoxides at ambient pressure. Chem Commun 55:8274–8277

    Article  CAS  Google Scholar 

  57. Ribeiro APC, Goodrich P, Martins LMDRS (2021) Efficient and reusable iron catalyst to convert CO2 into valuable cyclic carbonates. Molecules 26:1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Della Monica F, Buonerba A, Capacchione C (2019) Homogeneous Iron Catalysts in the reaction of epoxides with carbon dioxide. Adv Synth Catal 361:265–282

    Article  CAS  Google Scholar 

  59. Seong EY, Kim JH, Kim NH, Ahn KH, Kang EJ (2019) Multifunctional and sustainable Fe-Iminopyridine complexes for the synthesis of cyclic carbonates. Chemsuschem 12:409–415

    Article  CAS  PubMed  Google Scholar 

  60. Raghavendra B, Shashank PVS, Pandey MK, Reddy ND (2018) CO2/Epoxide coupling and the ROP of ϵ-Caprolactone: Mg and Al Complexes of γ-Phosphino-Ketiminates as dual-purpose catalysts. Organometallics 37:1656–1664

    Article  CAS  Google Scholar 

  61. Gao CY, Yang Y, Xu N, Liu J, Duan L, Chen X, Bao M (2021) A NiII Phosphonate as an Efficient catalyst for the synthesis of cyclic carbonate under ambient conditions. Cryst Growth Des 21:1413–1417

    Article  CAS  Google Scholar 

  62. Muthuramalingam S, Sankaralingam M, Velusamy M, Mayilmurugan R (2019) Catalytic conversion of atmospheric CO2 into organic carbonates by Nickel(II) complexes of Diazepane-Based N4 Ligands. Inorg Chem 58:12975–12985

    Article  CAS  PubMed  Google Scholar 

  63. Chen JJ, Xu YC, Gan ZL, Peng X, Yi XY (2019) Zinc complexes with tridentate Pyridyl-Pyrrole Ligands and their use as catalysts in CO2 fixation into cyclic carbonates. Eur J Inorg Chem 2019:1733–1739

    Article  CAS  Google Scholar 

  64. Bousquet B, Martinez A, Dufaud V (2018) Zinc–Azatrane Complexes as Efficient catalysts for the conversion of carbon dioxide into cyclic carbonates. ChemCatChem 10:843–848

    Article  CAS  Google Scholar 

  65. Miceli C, Rintjema J, Martin E, Escudero-Adán EC, Zonta C, Licini G, Kleij AW (2017) Vanadium(V) catalysts with high activity for the coupling of epoxides and CO2: characterization of a putative catalytic intermediate. ACS Catal 7:2367–2373

    Article  CAS  Google Scholar 

  66. Kuznetsova SA, Gorodishch IV, Gak AS, Zherebtsova VV, Gerasimov IS, Medvedev MG, Kitaeva DK, Khakina EA, North M, Belokon YN (2021) Chiral titanium(IV) and vanadium(V) salen complexes as catalysts for carbon dioxide and epoxide coupling reactions. Tetrahedron 82:131929

    Article  CAS  Google Scholar 

  67. Coletti A, Whiteoak CJ, Conte V, Kleij AW (2012) Vanadium catalyzed synthesis of cyclic organic carbonates. ChemCatChem 4:1190–1196

    Article  CAS  Google Scholar 

  68. Elkurtehi AI, Kerton FM (2017) Coupling reactions of Carbon dioxide with epoxides catalyzed by vanadium aminophenolate complexes. Chemsuschem 10:1249–1254

    Article  CAS  PubMed  Google Scholar 

  69. Borah R, Deori N, Brahma S (2020) An efficient CO2 fixation reaction with epoxides catalysed by in situ formed blue vanadium catalyst from dioxovanadium(+5) complex: moisture enhanced and atmospheric oxygen retarded catalytic activity. New J Chem 44:2547–2554

    Article  CAS  Google Scholar 

  70. Ta S, Ghosh M, Molla RA, Ghosh S, Islam M, Brandão P, Félix V, Das D (2019) Naphthalene based amide-imine derivative and its dinuclear vanadium complex: structures, atmospheric CO2 fixation and theoretical support. ChemistrySelect 4:10254–10259

    Article  CAS  Google Scholar 

  71. Bai D, Zhang Z, Wang G, Ma F (2015) Cycloaddition of epoxide and CO2 to cyclic carbonate catalyzed by VO(IV) porphyrin. Appl Organomet Chem 29:240–243

    Article  CAS  Google Scholar 

  72. Lahkar S, Borah R, Deori N, Brahma S (2020) (L)-phenylalanine derived Schiff base ligated vanadium(IV) complex as an efficient catalyst for a CO2 fixation reaction. Polyhedron 192:114848

    Article  CAS  Google Scholar 

  73. Chen TY, Liu CH, Tsai ML (2022) Oxovanadium(V) catalysts for the CO2 fixation into cyclic carbonates under ambient pressure. J Chin Chem Soc 69:476–485

    Article  CAS  Google Scholar 

  74. Kuruppathparambil RR, Babu R, Jeong H, Jang YH, Lee MH, Park D (2019) Room temperature CO2 fixation via cyclic carbonate synthesis over vanadium-MOF catalysts. Korean J Chem Eng 36:643–649

    Article  CAS  Google Scholar 

  75. Liang M, Zou DH (2016) Synthesis, crystal structure and catalytic activity of dioxidomolybdenum(VI) complex with tridentate ONO aroylhydrazone ligand. Acta Chim Slov 63:180–185

    Article  CAS  PubMed  Google Scholar 

  76. Gilmartin PH, Kozlowski MC (2020) Vanadium-catalyzed oxidative intramolecular coupling of tethered phenols: formation of Phenol–Dienone products. Org Lett 22:2914–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sako M, Losa R, Takiishi T, Vo-thanh G, Takizawa S, Sasai H (2020) Vanadium(V) complex-catalyzed one-pot synthesis of phenanthridines via a Pictet-Spengler-Dehydrogenative aromatization sequence. Catalysts 10:860

    Article  CAS  Google Scholar 

  78. Hasnaoui A, Idouhli R, Nayad A, Ouahine H, Khadiri ME, Abouelfida A, Elfirdoussi L, Ait Ali M (2020) Di-nuclear water-soluble oxovanadium (V) Schiff base complexes: electrochemical properties and catalytic oxidation. Inorg Chem Commun 119:108134

    Article  CAS  Google Scholar 

  79. Amadio E, González-Fabra J, Carraro D, Denis W, Gjoka B, Zonta C, Bartik K, Cavani F, Solmi S, Bo C, Licini G (2018) Efficient Vanadium-Catalyzed Aerobic C−C Bond oxidative cleavage of vicinal diols. Adv Synth Catal 360:3286–3296

    Article  CAS  Google Scholar 

  80. Amadio E, Di Lorenzo R, Zonta C, Licini G (2015) Vanadium catalyzed aerobic carbon–carbon cleavage. Coord Chem Rev 301–302:147–162

    Article  Google Scholar 

  81. Hossain MK, Haukka M, Lisensky GC, Lehtonen A, Nordlander E (2019) Oxovanadium(V) complexes with tripodal bisphenolate and monophenolate ligands: syntheses, structures and catalytic activities. Inorganica Chim Acta 487:112–119

    Article  CAS  Google Scholar 

  82. Grivani G, Tahmasebi V, Khalaji AD (2014) A new oxidovanadium(IV) complex containing an O, N-bidentate Schiff base ligand: Synthesis, characterization, crystal structure determination, thermal study and catalytic activity for an oxidative bromination reaction. Polyhedron 68:144–150

    Article  CAS  Google Scholar 

  83. Beattie C, North M (2014) VanadiumV(salen) catalysed synthesis of oxazolidinones from epoxides and isocyanates. RSC Adv 4:31345–31352

    Article  ADS  CAS  Google Scholar 

  84. Monfared HH, Abbasi V, Rezaei A, Ghorbanloo M, Aghaei A (2012) A heterogenized vanadium oxo-aroylhydrazone catalyst for efficient and selective oxidation of hydrocarbons with hydrogen peroxide. Transit Met Chem 37:85–92

    Article  Google Scholar 

  85. Zhang G, Scott BL, Wu R, Silks LAP, Hanson SK (2012) Aerobic oxidation reactions catalyzed by vanadium complexes of Bis(Phenolate) ligands. Inorg Chem 51:7354–7361

    Article  CAS  PubMed  Google Scholar 

  86. Ottaviani D, Van-Dúnem V, Carvalho AP, Martins A, Martins LMDRS (2020) Eco-friendly cyclohexane oxidation by a V-scorpionate complex immobilized at hierarchical MOR zeolite. Catal Today 348:37–44

    Article  CAS  Google Scholar 

  87. DeNike KA, Kilyanek SM (2019) Deoxydehydration of vicinal diols by homogeneous catalysts: a mechanistic overview. R Soc Open Sci 6:191165

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  88. Azarkamanzad Z, Farzaneh F, Maghami M, Simpson J, Azarkish M (2018) Synthesis, characterization and immobilization of a novel mononuclear vanadium (V) complex on modified magnetic nanoparticles as catalyst for epoxidation of allyl alcohols. Appl Organomet Chem 32:4168

    Article  Google Scholar 

  89. Dragancea D, Talmaci N, Shova S, Novitchi G, Darvasiová D, Rapta P, Breza M, Galanski M, Kožíšek J, Martins NMR, Martins LMDRS, Pombeiro AJL, Arion VB (2016) Vanadium(V) Complexes with Substituted 1,5-bis(2-hydroxybenzaldehyde)carbohydrazones and Their Use As Catalyst Precursors in Oxidation of Cyclohexane. Inorg Chem 55:9187–9203

    Article  CAS  PubMed  Google Scholar 

  90. Ebrahimipour SY, Sheikhshoaie I, Kautz AC, Ameri M, Pasban-Aliabadi H, Amiri Rudbari H, Bruno G, Janiak C (2015) Mono- and dioxido-vanadium(V) complexes of a tridentate ONO Schiff base ligand: synthesis, spectral characterization, X-ray crystal structure, and anticancer activity. Polyhedron 93:99–105

    Article  CAS  Google Scholar 

  91. Monfared HH, Kheirabadi S, Asghari Lalami N, Mayer P (2011) Dioxo- and oxovanadium(V) complexes of biomimetic hydrazone ONO and NNS donor ligands: synthesis, crystal structure and catalytic reactivity. Polyhedron 30:1375–1384

    Article  Google Scholar 

  92. Conte V, Floris B (2010) Vanadium catalyzed oxidation with hydrogen peroxide. Inorganica Chim Acta 363:1935–1946

    Article  CAS  Google Scholar 

  93. Romanowski G, Kwiatkowski E, Nowicki W, Kwiatkowski M, Lis T (2008) Chiral dioxovanadium(V) Schiff base complexes of 1,2-diphenyl-1,2-diaminoethane and aromatic o-hydroxyaldehydes: synthesis, characterization, catalytic properties and structure. Polyhedron 27:1601–1609

    Article  CAS  Google Scholar 

  94. Sutradhar M, Da Silva JAL, Pombeiro AJL (2021) Chapter 1: Introduction: Vanadium, Its Compounds and Applications. RSC Catal Ser 1–11.

  95. Langeslay RR, Kaphan DM, Marshall CL, Stair PC, Sattelberger AP, Delferro M (2019) Catalytic applications of vanadium: a mechanistic perspective. Chem Rev 119:2128–2191

    Article  CAS  PubMed  Google Scholar 

  96. Sutradhar M, Martins LMDRS, Guedes da Silva MFC, Pombeiro AJL (2015) Vanadium complexes: recent progress in oxidation catalysis. Coord Chem Rev 301–302:200–239

    Article  Google Scholar 

  97. Bok T, Noh EK, Lee BY (2006) Coupling reaction of CO2 with epoxides by binary catalytic system of lewis acids and onium salts. Bull Korean Chem Soc 27:1171–1174

    Article  CAS  Google Scholar 

  98. SAINT+, 6.02 ed., (1999) Bruker AXS, Madison.

  99. Sheldrick GM, (2000) SADABS 2.0.

  100. Sheldrick GM (2018) SHELXL-2018: Program for crystal structure refinement. University of Göttingen, Göttingen

    Google Scholar 

  101. Borah R, Lahkar S, Deori N, Brahma S (2022) New vanadium mediated one-pot in situ (L)-histidine based ligand cyclization and aerobic dehydrogenative aromatization. Inorg Chem Commun 142:109573

    Article  CAS  Google Scholar 

  102. Grivani G, Tahmasebi V, Khalaji AD, Eigner V, Dušek M (2014) Synthesis, characterization, crystal structure, catalytic activity in oxidative bromination, and thermal study of a new oxidovanadium Schiff base complex containing O, N-bidentate Schiff base ligand. J Coord Chem 67:3664–3677

    Article  CAS  Google Scholar 

  103. Plyuta N, Kokozay V, Cauchy T, Avarvari N, Goreshnik E, Petrusenko S (2019) Solvent dependent prototropic tautomerism in a Schiff Base derived from o-Vanillin and 2-Aminobenzylalcohol. ChemistrySelect 4:7858–7865

    Article  CAS  Google Scholar 

  104. Alassmy YA, Asgar Pour Z, Pescarmona PP (2020) Efficient and easily reusable metal-free heterogeneous catalyst beads for the conversion of CO2 into cyclic carbonates in the presence of water as hydrogen-bond donor. ACS Sustain Chem Eng 8:7993–8003

    Article  CAS  Google Scholar 

  105. Li H, Niu Y (2011) Synthesis of cyclic chloropropylene carbonate from carbon dioxide with epichlorohydrin. Asian J Chem 23:3344–3346

    CAS  Google Scholar 

Download references

Acknowledgements

We thank DST-SERB, New Delhi, India for financial support. RB thanks CSIR for the research fellowship. We also thank the Department of Chemistry, Gauhati University for various facilities and Sophisticated Analytical Instrumentation Facility (SAIF), Gauhati University for the single crystal X-ray diffraction facility.

Author information

Authors and Affiliations

Authors

Contributions

RB: data curation, methodology, investigation, validation, visualization and writing—original draft. ND: software. SL: validation. SP: software and investigation. SB: conceptualization, funding acquisition, project administration, supervision and resources.

Corresponding author

Correspondence to Sanfaori Brahma.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2142 KB)

Supplementary file2 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borah, R., Deori, N., Lahkar, S. et al. Carbon Dioxide Cycloaddition to Epoxides: A Comparative Study on the Catalytic Activities of Two Binary Catalysts VIVO(N2O2)/TBAB and VVO2(O2N)/TBAB and In Situ Derivation of a Bifunctional Catalyst. Catal Lett 154, 1081–1093 (2024). https://doi.org/10.1007/s10562-023-04367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04367-2

Keywords

Navigation