Skip to main content
Log in

CeO2/α-MnO2 Nanorods as Dual-Functional Catalyst for Simultaneous Abatement of Nitric Oxide and Chlorobenzene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The elimination of chlorinated organics (chlorobenzene as a model) in a SCR convertor has been given an increasing demand. Herein, a novel catalyst by loading CeO2 clusters on α-MnO2 nanorods has been designed for simultaneous abatement of NOx and chlorobenzene. The CeO2 modification provided new active center for CB oxidation as well as promoted the SCR activity of MnO2 by increasing both redox performance and adsorption property. The independent effect of dual active centers can be inferred from changing the amount of CeO2 content and atmosphere. In this regard, structure and chemical characterizations were conducted to further reveal the interaction mechanism and function in specific reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang D, Chen J, Peng Y et al (2018) Dechlorination of chlorobenzene on vanadium-based catalysts for low-temperature SCR. Chem Commun 54(16):2032–2035

    Article  CAS  Google Scholar 

  2. Busca G, Lietti L, Ramis G et al (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B 18(1–2):1–36

    Article  CAS  Google Scholar 

  3. Ramis G, Bregani F, Forzatti P (1990) Fourier transform-infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction. Appl Catal 64:259–278

    Article  CAS  Google Scholar 

  4. Forzatti P (2001) Present status and perspectives in de-NOx SCR catalysis. Appl Catal A 222(1–2):221–236

    Article  CAS  Google Scholar 

  5. Debecker DP, Bertinchamps F, Blangenois N et al (2007) On the impact of the choice of model VOC in the evaluation of V-based catalysts for the total oxidation of dioxins: furan vs. chlorobenzene. Appl Catal B Environ 74(3–4):223–232

    Article  CAS  Google Scholar 

  6. Liu Y, Luo M, Wei Z et al (2001) Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts. Appl Catal B 29(1):61–67

    Article  CAS  Google Scholar 

  7. Nakajima F, Hamada I (1996) The state-of-the-art technology of NOx control. Catal Today 29:109–115

    Article  CAS  Google Scholar 

  8. Du C, Lu S, Wang Q et al (2018) A review on catalytic oxidation of chloroaromatics from flue gas. Chem Eng J 334:519–544

    Article  CAS  Google Scholar 

  9. Bertinchamps F, Treinen M, Blangenois N et al (2005) Positive effect of NOx on the performances of VOx/TiO2-based catalysts in the total oxidation abatement of chlorobenzene. J Catal 230(2):493–498

    Article  CAS  Google Scholar 

  10. Bertinchamps F, Treinen M, Eloy P et al (2007) Understanding the activation mechanism induced by NOx on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs. Appl Catal B 70(1–4):360–369

    Article  CAS  Google Scholar 

  11. Gallastegi-Villa M, Aranzabal A, Boukha Z et al (2015) Role of surface vanadium oxide coverage support on titania for the simultaneous removal of o-dichlorobenzene and NOx from waste incinerator flue gas. Catal Today 254:2–11

    Article  CAS  Google Scholar 

  12. Gallastegi-Villa M, Aranzabal A, Gonzalez-Marcos JA et al (2017) Tailoring dual redox-acid functionalities in VOx/TiO2/ZSM5 catalyst for simultaneous abatement of PCDD/Fs and NOx from municipal solid waste incineration. Appl Catal B 205:310–318

    Article  CAS  Google Scholar 

  13. Xu H, Yan N, Qu Z et al (2017) Gaseous heterogeneous catalytic reactions over Mn-based oxides for environmental applications: a critical review. Environ Sci Technol 51(16):8879–8892

    Article  PubMed  CAS  Google Scholar 

  14. Huang Z, Gu X, Wen W et al (2013) A “smart” hollandite DeNOx catalyst: self-protection against alkali poisoning. Angew Chem Int Ed 52(2):660–664

    Article  CAS  Google Scholar 

  15. Liu J, Wei Y, Li PZ et al (2018) Experimental and theoretical investigation of mesoporous MnO2 nanosheets with oxygen vacancies for high-efficiency catalytic DeNOx. ACS Catal 8(5):3865–3874

    Article  CAS  Google Scholar 

  16. Li K, Chen J, Peng Y et al (2017) The relationship between surface open cells of α-MnO 2 and CO oxidation ability from a surface point of view. J Mater Chem A 5(39):20911–20921

    Article  CAS  Google Scholar 

  17. Liang S, Teng F, Bulgan G et al (2008) Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C 112(14):5307–5315

    Article  CAS  Google Scholar 

  18. Jia J, Zhang P, Chen L (2016) Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl Catal B 189:210–218

    Article  CAS  Google Scholar 

  19. Casapu M, Kröcher O, Elsener M (2009) Screening of doped MnOx–CeO2 catalysts for low-temperature NO-SCR. Appl Catal B 88(3–4):413–419

    Article  CAS  Google Scholar 

  20. Wu Z, Jin R, Wang H et al (2009) Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catal Commun 10(6):935–939

    Article  CAS  Google Scholar 

  21. Zhao L, Li C, Zhang X et al (2016) Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas. Environ Sci Pollut Res 23(2):1471–1481

    Article  CAS  Google Scholar 

  22. Peng Y, Li J, Si W et al (2015) Ceria promotion on the potassium resistance of MnOx/TiO2 SCR catalysts: an experimental and DFT study. Chem Eng J 269:44–50

    Article  CAS  Google Scholar 

  23. Ma Z, Sheng L, Wang X et al (2019) Oxide catalysts with ultrastrong resistance to SO2 deactivation for removing nitric oxide at low temperature. Adv Mater 31:1903719

    Article  CAS  Google Scholar 

  24. Weng X, Sun P, Long Y et al (2017) Catalytic oxidation of chlorobenzene over Mnx Ce1–xO2/HZSM-5 catalysts: a study with practical implications. Environ Sci Technol 51(14):8057–8066

    Article  PubMed  CAS  Google Scholar 

  25. Wang X, Li Y (2003) Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem A Eur J 9(1):300–306

    Article  Google Scholar 

  26. Gan L, Shi W, Li K et al (2018) Synergistic promotion effect between NOx and chlorobenzene removal on MnOx–CeO2 catalyst. ACS Appl Mater Interfaces 10(36):30426–30432

    Article  PubMed  CAS  Google Scholar 

  27. Galakhov VR, Demeter M, Bartkowski S et al (2002) Mn 3s exchange splitting in mixed-valence manganites. Phys Rev B 65(11):113102

    Article  Google Scholar 

  28. Marberger A, Ferri D, Elsener M et al (2016) The significance of Lewis acid sites for the selective catalytic reduction of nitric oxide on vanadium-based catalysts. Angew Chem Int Ed 55(39):11989–11994

    Article  CAS  Google Scholar 

  29. Zasada F, Janas J, Piskorz W et al (2017) Total oxidation of lean methane over cobalt spinel nanocubes controlled by the self-adjusted redox state of the catalyst: experimental and theoretical account for interplay between the Langmuir-Hinshelwood and Mars-Van Krevelen mechanisms. ACS Catal 7(4):2853–2867

    Article  CAS  Google Scholar 

  30. Arnarson L, Falsig H, Rasmussen SB et al (2017) A complete reaction mechanism for standard and fast selective catalytic reduction of nitrogen oxides on low coverage VOx/TiO2 (0 0 1) catalysts. J Catal 346:188–197

    Article  CAS  Google Scholar 

  31. Wang J, Wang X, Liu X et al (2015) Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: the effects of chlorine substituents. Catal Today 241:92–99

    Article  CAS  Google Scholar 

  32. Lichtenberger J, Amiridis MD (2004) Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. J Catal 223(2):296–308

    Article  CAS  Google Scholar 

  33. Ramstetter A, Baerns M (1988) Infrared spectroscopic investigation of the adsorption states of 1-butene, 1, 3-butadiene, furan, 2, 5H-furanone, and maleic anhydride on alumina-supported V2O5/P2O5 catalyst: I. Adsorption under nonreactive conditions. J Catal 109(2):303–313

    Article  CAS  Google Scholar 

  34. Song Z, Yu S, Liu H et al (2022) Carbon/chlorinate deposition on MnOx–CeO2 catalyst in chlorobenzene combustion: the effect of SCR flue gas. Chem Eng J 433:133552

    Article  CAS  Google Scholar 

  35. Ye L, Lu P, Chen X et al (2020) The deactivation mechanism of toluene on MnOx–CeO2 SCR catalyst. Appl Catal B 277:119257

    Article  CAS  Google Scholar 

  36. Jin Q, Shen Y, Mei C et al (2022) Catalytic removal of NO and dioxins over W–Zr–Ox/Ti–Ce–Mn–Ox from flue gas: performance and mechanism study. Catal Today 388:372–382

    Article  Google Scholar 

  37. Li G, Shen K, Wang L et al (2021) Synergistic degradation mechanism of chlorobenzene and NOx over the multi-active center catalyst: the role of NO2, Brønsted acidic site, oxygen vacancy. Appl Catal B 286:119865

    Article  CAS  Google Scholar 

  38. Zhang C, Zhang J, Shen Y et al (2022) Synergistic catalytic elimination of NOx and chlorinated organics: cooperation of acid sites. Environ Sci Technol 56(6):3719–3728

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21876093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1137 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, T., Chen, J., Li, K. et al. CeO2/α-MnO2 Nanorods as Dual-Functional Catalyst for Simultaneous Abatement of Nitric Oxide and Chlorobenzene. Catal Lett 154, 494–502 (2024). https://doi.org/10.1007/s10562-023-04331-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04331-0

Keywords

Navigation