Skip to main content
Log in

Ag Nanoparticles Stabilized on Magnetic Carboxymethyl Lignin: Synthesis, Characterization and its Performance in the N-Acylation Reactions and Investigation of its Antioxidant and Anti-Human Colorectal Cancer Application

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This report expresses a sustainable methodology for the in situ synthesis of Ag nanoparticles (NPs) adorned carboxymethyl lignin (CML) functionalized Fe3O4 nanocomposite (Fe3O4@CML/Ag) and its subsequent chemical and biological applications. Structural and physicochemical features of such novel material was evaluated through a number of analytical techniques like FT-IR, FE-SEM, TEM, EDS, XRD, ICP and VSM. The nanomaterial was a competent catalyst towards the N-acylation of diverse amines using acetic anhydride at solvent-free conditions. The material was isolated by magnet and reused for 8 consecutive times. Furthermore, the material was employed in the biological evaluation of anti-oxidant properties by DPPH method as well as the anticancer studies of against HT-29 and Caco-2 colon cell lines following MTT method. The DPPH assay afforded a significant IC50 value that suggested the material to have good anticancer properties. Interestingly, % cell viability of the malignant cell lines was found to decrease dose-dependently over Fe3O4@NaLS/Ag nanocomposite. MTT assay afforded the corresponding IC50 values to be 395.4 μg/ml and 287.3 μg/ml respectively against the two cell lines. The absorbance rate was evaluated at 545 nm, which represented toxicity on normal cell line (CHO) even up to 2000 μg/mL.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tamoradi T, Veisi H, Karmakar B, Gholami J (2020) A competent green methodology for the synthesis of aryl thioethers and 1H-tetrazole over magnetically retrievable novel CoFe2O4@l-asparagine anchored Cu. Ni nanocatalyst Mater Sci Eng C 107:110260–110270

    Article  CAS  Google Scholar 

  2. Hemmati S, Hekmati M, Salamat D, Yousefi M, Karmakar B, Veisi H (2020) Anchoring Mn (IV) in multi pyridine modified mesoporous silica SBA-15: an efficient nanocatalyst for selective oxidation of sulfides to sulfoxides. Polyhedron 179:114359–114364

    Article  CAS  Google Scholar 

  3. Olivera S, Muralidhara HB, Venkatesh K, Guna VK, Gopalakrishna K, Kumar Y (2016) Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: a review. Carbohyd Polym 153:600–618

    Article  CAS  Google Scholar 

  4. Awual MR, Khraisheh M, Alharthi NH, Luqman M, Islam A, Karim MR, Rahman MM (2018) Khaleque MA (2018) Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials. Chem Eng J 343(1):118–127

    Article  CAS  Google Scholar 

  5. Emadzadeh S, Qomi M, Saadat M, Piroozi F (2016) Three-phase hollow fiber liquid-phase micro extraction for determination and analysis of terazosin in biological fluids via high performance liquid chromatography at trace levels. Current Analytical Chem 12(5):489–495

    Article  CAS  Google Scholar 

  6. Kermanshah A, Ziarati P, Asgarpanah J, Qomi M (2014) Food values of two endemic wild almond species from Iran. Int J Plant, Animal Environ Sci 4(3):380–388

    CAS  Google Scholar 

  7. Ebneyamin E, Mansouri P, Rajabi M, Qomi M, Asgharian R, Azizian Z (2020) The efficacy and safety of permethrin 25% with tea tree oil gel on rosacea treatment: a double-blind, controlled clinical trial. J Cosmetic Dermatol 19(6):1426–1431

    Article  Google Scholar 

  8. Mina Darvish PR, Qomi M, Akhgari M (2015) Determination of Trace Amounts of Methamphetamine in Biological Samples by Hollow Fiber Liquid-phase Microextraction Followed by High Performance Liquid Chromatography. Biosciences Biotechnology Research Asia. 12:587–597

    Article  Google Scholar 

  9. Afradi N, Foroughifar N, Pasdar H, Qomi M (2019) Aspartic-acid-loaded starch-functionalized Mn–Fe–Ca ferrite magnetic nanoparticles as novel green heterogeneous nanomagnetic catalyst for solvent-free synthesis of dihydropyrimidine derivatives as potent antibacterial agents. Res Chem Intermediates 45:3251–3271

    Article  CAS  Google Scholar 

  10. Rezaee R, Qomi M, Piroozi F (2015) Hollow-fiber micro-extraction combined with HPLC for the determination of sitagliptin in urine samples. J Serbian Chem Soc 80(10):1311–1320

    Article  CAS  Google Scholar 

  11. Mohammadi P, Heravi MM, Sadjadi S (2020) Green synthesis of Ag NPs on magnetic polyallylamine decorated g-C3N4 by Heracleum persicum extract: efficient catalyst for reduction of dyes. Sci Rep 10:6579–6588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Aguilera G, Berry CC, West RM, Gonzalez-Monterrubio E, Angulo-molina A, Arias-Carrión Ó et al (2019) Carboxymethyl cellulose coated magnetic nanoparticles transport across a human lung microvascular endothelial cell model of the blood–brain barrier. Nanoscale Adv 1:671–685

    Article  PubMed  CAS  Google Scholar 

  13. Esmaeilpour M, Sardarian AR, Firouzabadi H (2018) N-heterocyclic carbene-Pd(II) complex based on theophylline supported on Fe3O4@SiO2 nanoparticles: highly active, durable and magnetically separable catalyst for green Suzuki-Miyaura and Sonogashira-Hagihara coupling reactions. J Organometal Chem 873:22–34

    Article  CAS  Google Scholar 

  14. Lotfi S, Veisi H (2019) Pd nanoparticles decorated poly-methyldopa@GO/Fe3O4 nanocomposite modified glassy carbon electrode as a new electrochemical sensor for simultaneous determination of acetaminophen and phenylephrine. Mater Sci Eng C 105:110112–110122

    Article  CAS  Google Scholar 

  15. Ding Y, Shen SZ, Sun H, Sun K, Liu F, Qi Y, Yan J (2015) Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Mater Sci Eng C 48:487–498

    Article  CAS  Google Scholar 

  16. Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334

    Article  PubMed  CAS  Google Scholar 

  17. Cao X, Tan C, Sindoro M, Zhang H (2017) Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion. Chem Soc Rev 46:2660–2677

    Article  PubMed  CAS  Google Scholar 

  18. Kazemi M, Ghobadi M, Mirzaie A (2018) Cobalt ferrite nanoparticles (CoFe2O4 MNPs) as catalyst and support: magnetically recoverable nanocatalysts in organic synthesis. Nanotechnol Rev 7:43–68

    Article  CAS  Google Scholar 

  19. Veisi H, Ozturk T, Karmakar B, Tamoradi T, Hemmati S (2020) In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction. Carbohyd polym 235:115966–115975

    Article  CAS  Google Scholar 

  20. Xie W, Wang H (2020) Immobilized polymeric sulfonated ionic liquid on core-shell structured Fe3O4/SiO2 composites: a magnetically recyclable catalyst for simultaneous transesterification and esterifications of low-cost oils to biodiesel. Renewable Energy 145:1709–1719

    Article  CAS  Google Scholar 

  21. Shahriari M, Sedigh MA, Mahdavian Y, Mahdigholizad S, Pirhayati M, Karmakar B, Veisi H (2021) In situ supported Pd NPs on biodegradable chitosan/agarose modified magnetic nanoparticles as an effective catalyst for the ultrasound assisted oxidation of alcohols and activities against human breast cancer. Int J Biol Macromol 172:55–65

    Article  PubMed  CAS  Google Scholar 

  22. Veisi H, Tamoradi T, Karmakar B, Hemmati S (2020) Green tea extract–modified silica gel decorated with palladium nanoparticles as a heterogeneous and recyclable nanocatalyst for Buchwald-Hartwig C–N cross-coupling reactions. J. Phys. Chem. Solids 138:109256–109262

    Article  CAS  Google Scholar 

  23. Hamelian M, Hemmati S, Varmira K, Veisi H (2018) Green synthesis, antibacterial, antioxidant and cytotoxic effect of gold nanoparticles using Pistacia Atlantica extract. J Taiwan Institute Chem Eng 93:21–30

    Article  CAS  Google Scholar 

  24. Veisi H, Hemmati S, Shirvani H, Veisi H (2016) Green synthesis and characterization of monodispersed silver nanoparticles obtained using oak fruit bark extract and their antibacterial activity. Appl Organometal Chem 30:387–391

    Article  CAS  Google Scholar 

  25. Veisi H, Ebrahimi Z, Karmakar B, Tamoradi T, Ozturk T (2022) A convenient green protocol for oxidative esterification of arylaldehydes over Pd NPs decorated polyplex encapsulated Fe3O4 microspheres. Int J Biol Macromol 200:132–138

    Article  PubMed  CAS  Google Scholar 

  26. Veisi H, Karmakar B, Tamoradi T, Hemmati S, Hekmati M, Hamelian M (2021) Biosynthesis of CuO nanoparticles using aqueous extract of herbal tea (Stachys Lavandulifolia) flowers and evaluation of its catalytic activity. Sci Rep 11:1–13

    Article  Google Scholar 

  27. Tamoradi T, Kiasat AR, Veisi H, Nobakht V, Karmakar B (2022) RSM process optimization of biodiesel production from rapeseed oil and waste corn oil in the presence of green and novel catalyst. Sci Rep 12:19652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Baghayeri M, Veisi H, Farhadi S, Beitollahi H, Maleki B (2018) Ag nanoparticles decorated Fe3O4/chitosan nanocomposite: synthesis, characterization and application toward electrochemical sensing of hydrogen peroxide. J Iranian Chem Soc 15(5):1015–1022

    Article  CAS  Google Scholar 

  29. Mirfakhraei S, Hekmati M, Eshbala FH, Veisi H (2018) Fe3O4/PEG-SO3H as a heterogeneous and magnetically-recyclable nanocatalyst for the oxidation of sulfides to sulfones or sulfoxides. New J Chem 42:1757–1761

    Article  CAS  Google Scholar 

  30. Veisi H, Kazemi S, Mohammadi P, Safarimehr P, Hemmati S (2019) Catalytic reduction of 4-nitrophenol over Ag nanoparticles immobilized on Stachys lavandulifolia extract-modified multi walled carbon nanotubes. Polyhedron 157:232–240

    Article  CAS  Google Scholar 

  31. Baghayeri M, Amiri A, Alizadeh Z, Veisi H, Hasheminejad E (2018) Non-enzymatic voltammetric glucose sensor made of ternary NiO/Fe3O4-SH/para-amino hippuric acid nanocomposite. J Electroanalytical Chem 810:69–77

    Article  CAS  Google Scholar 

  32. Pei W, Shang W, Liang C, Jiang X, Huang C, Yong Q (2020) Using lignin as the precursor to synthesize Fe3O4@lignin composite for preparing electromagnetic wave absorbing lignin-phenol-formaldehyde adhesive. Ind Crops Prod 154:112638

    Article  CAS  Google Scholar 

  33. Bharamanagowda MM, Panchangam RK (2020) Fe3O4-Lignin@Pd-NPs: a highly efficient, magnetically recoverable and recyclable catalyst for Mizoroki-Heck reaction under solvent-free conditions. Appl Organometal Chem 34:e5837

    Article  Google Scholar 

  34. Jędrzak A, Rębiś T, Nowicki M, Synoradzki K, Mrówczyński R, Jesionowski T (2018) Polydopamine grafted on an advanced Fe3O4/lignin hybrid material and its evaluation in biosensing. Appl Surf Sci 455:455–464

    Article  Google Scholar 

  35. (a) Sadjadi S, Mohammadi P, Heravi M M (2020) Bio-assisted synthesized Pd nanoparticles supported on ionic liquid decorated magnetic halloysite: an efficient catalyst for degradation of dyes. Sci. Rep. 10: 6535-6544

  36. Hemmati S, Mehrazin L, Hekmati M, Izadi M, Veisi H (2018) Biosynthesis of CuO nanoparticles using Rosa canina fruit extract as a recyclable and heterogeneous nanocatalyst for CN Ullmann coupling reactions. Mater Chem Phys 214:527–532

    Article  CAS  Google Scholar 

  37. Veisi H, Hemmati S, Shirvani H, Veisi H (2016) Green synthesis and characterization of monodispersed silver nanoparticles obtained using oak fruit bark extract and their antibacterial activity. Appl Organomet Chem 30(6):387–391

    Article  CAS  Google Scholar 

  38. Hemmati S, Heravi MM, Karmakar B, Veisi H (2020) Green fabrication of reduced graphene oxide decorated with Ag nanoparticles (rGO/Ag NPs) nanocomposite: a reusable catalyst for the degradation of environmental pollutants in aqueous medium. J Mol Liq 319:114302–114310

    Article  CAS  Google Scholar 

  39. Liu Y, Zhou H, Wang J, Yu D, Li Z, Liu R (2022) Facile synthesis of silver nanocatalyst decorated Fe3O4@PDA core–shell nanoparticles with enhanced catalytic properties and selectivity. RSc Adv 12:3847–3855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Liu Y, Zhou H, Wang J, Li S, Li Z, Zhang J (2022) Core-shell Fe3O4@catechol-formaldehyde trapped satellite-like silver nanoparticles toward catalytic reduction in cationic and anionic dyes. Vacuum 202:111204

    Article  CAS  Google Scholar 

  41. Gong C, Zhou Z, Li J, Zhou H, Liu R (2018) Facile synthesis of ultra stable Fe3O4@Carbon core-shell nanoparticles entrapped satellite au catalysts with enhanced 4-nitrophenol reduction property. J Taiwan Inst Chem Eng 84:229–235

    Article  CAS  Google Scholar 

  42. He C, Guo Y, Karmakar B, El-kott A, Ahmed AE, Khames A (2021) Decorated silver nanoparticles on biodegradable magnetic chitosan/starch composite: investigation of its cytotoxicity, antioxidant and anti-human breast cancer properties. J Environ Chem Eng 9:106393

    Article  CAS  Google Scholar 

  43. Huang T, AlSalem HS, Binkadem MS, Al-Goul ST, Elkott AF, Alsayegh AA, Majdou GJ, Batiha GE, Karmakar B (2022) Green synthesis of Ag/Fe3O4 nanoparticles using Mentha extract: preparation, characterization and investigation of its anti-human lung cancer application. J Saudi Chem Soc 26:101505

    Article  CAS  Google Scholar 

  44. Anbu N, Nagarjun N, Jacob M, Kalaiarasi JM, Dhakshinamoorthy A (2019) Acetylation of alcohols, amines, phenols, thiols under catalyst and solvent-free conditions. Chemistry 1:69–79

    Article  Google Scholar 

  45. Amik A, Molnar M (2017) An improved AND Efficient N-acetylation of amines using choline chloride based deep eutectic solvents. Org Prep Proc Int 49:249–257

    Article  Google Scholar 

  46. Dong J, Li J, Luo J, Wu W (2019) CircHMGCS1 is upregulated in colorectal cancer and promotes proliferation of colorectal cancer cells by targeting microRNA-503-5p. Eur J Inflammation 17:1

    Article  Google Scholar 

  47. Lin A, Zhang J, Luo P (2020) Crosstalk between the MSI status and tumor microenvironment in colorectal cancer. Front Immunol 11:2039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Han YD, Oh TJ, Chung TH (2019) Early detection of colorectal cancer based on presence of methylated syndecan-2 (SDC2) in stool DNA. Clin Epigenetics 11:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Valeri N (2019) Streamlining detection of fusion genes in colorectal cancer: having “Faith” in precision oncology in the (Tissue) “Agnostic” era. Cancer Res 79:1041–1043

    Article  PubMed  CAS  Google Scholar 

  50. Abdel-Fattah WI, Ali GW (2018) On the anti-cancer activities of silver nanoparticles. J Appl Biotechnol Bioeng 5(2):00116

    Google Scholar 

  51. Patil MP, Kim G-D (2017) Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol 101:79

    Article  PubMed  CAS  Google Scholar 

  52. Bisht G, Rayamajhi S (2016) ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine 3:1

    Article  Google Scholar 

  53. Hassanien R, Husein DZ, Al-Hakkani MF (2018) Biosynthesis of copper nanoparticles using aqueous Tilia extract: antimicrobial and anticancer activities. Heliyon 12:e01077

    Article  Google Scholar 

  54. Yazdani E, Miraki MK, Salamatmanesh A, Azarnia J, Azizi K, Ghandi L, Heydari A (2019) A magnetically recoverable copper–salen complex as a nano-catalytic system for amine protection via acetylation using thioacetic acid. Res Chem Intermed 45(4):1775–1793

    Article  CAS  Google Scholar 

  55. Aerry S, Kumar A, Saxena A, De A, Mozumdar S (2013) Chemoselective acetylation of amines and thiols using monodispersed Ni-nanoparticles. Green Chem Lett Rev 6(2):183–188

    Article  CAS  Google Scholar 

  56. Warkhade SK, Chaurasiya V, Rawat M, Gaikwad GS, Zopade SP, Pratap UR, Wankhade AV (2018) Nano-nickel aluminates: a sustainable nanocatalyst for solvent-free acetylation of alcohols phenols and amines. Chem Select 3:2515–2522

    CAS  Google Scholar 

  57. Zeynizadeh B, Aminzadeh FM, Mousavi H (2019) Two different facile and efficient approaches for the synthesis of various N-arylacetamides via N-acetylation of arylamines and straightforward one-pot reductive acetylation of nitroarenes promoted by recyclable CuFe2O4 nanoparticles in water. Green proc Synth 8:742–755

    Article  CAS  Google Scholar 

  58. Mandal P, Chattopadhay AN, Chattopadhay AP (2018) Highly efficient and recyclable silver-graphene oxide nano-composite catalyst in the acylation of amines under solvent-free condition. MOJ Bioorg Org Chem 2(4):201–211

    Google Scholar 

  59. Tandon N, Patil SM, Tandon R, Kumar P (2021) Magnetically recyclable silica-coated ferrite magnetite-K10 montmorillonite nanocatalyst and its applications in O, N, and S-acylation reaction under solvent-free conditions. RSc Adv 11:21291–21300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Brahmayya M, Suen SY, Dai SA (2018) Sulfonated graphene oxide-catalyzed N -acetylation of amines with acetonitrile under sonication. J Taiwan Inst Chem Eng 83:174–183

    Article  CAS  Google Scholar 

  61. Lin Z, Jin J, Qiao J, Tong J, Shen C (2020) Facile fabrication of glycosylpyridyl-Triazole@Nickel nanoparticles as recyclable nanocatalyst for acylation of amines in water. Catalysts 10:230–239

    Article  CAS  Google Scholar 

  62. Azizi S, Soleymani J, Shojaei S, Shadjou N (2020) Synthesize of folic acid functionalized dendritic fibrous nanosilica and its application as an efficient nanocatalyst for access to direct amidation of carboxylic acids with amines. J Nanostruct 10(3):671–681

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their appreciation to Deanship of Scientific Research at King Khalid University for funding this project through the General Research Program under grant number (R.G.P2/197/43).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash Karmakar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Karmakar, B., Dou, F. et al. Ag Nanoparticles Stabilized on Magnetic Carboxymethyl Lignin: Synthesis, Characterization and its Performance in the N-Acylation Reactions and Investigation of its Antioxidant and Anti-Human Colorectal Cancer Application. Catal Lett 154, 409–421 (2024). https://doi.org/10.1007/s10562-023-04310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04310-5

Keywords

Navigation