Skip to main content

Advertisement

Log in

Interface Engineering of Oxygen-Vacancy-Rich VO-NiFe2O4@Ni2P Heterostructure for Highly Efficient Oxygen Evolution Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Rational construction of high-performance and robust electrocatalysts for the oxygen evolution reaction (OER) is highly desirable and challenging. Herein, we report a facile strategy to fabricate a novel VO-NiFe2O4@Ni2P heterostructure consisting of the host NiFe2O4 and in situ generated Ni2P through the selective phosphorylation method. The as-prepared VO-NiFe2O4@Ni2P catalyst exhibited remarkable OER activity with a much low overpotential of 220 mV at 10 mA cm−2, which is superior to the commercial IrO2 catalyst. Furthermore, VO-NiFe2O4@Ni2P, when directly used as bifunctional electrodes for overall water splitting, exhibited a low voltage of 1.52 V at 10 mA cm−2 and remarkable durability for 40 h. Such excellent OER performance is mainly contributed to the interfacial effects between NiFe2O4 and Ni2P, and the presence of rich oxygen vacancies. This work provides a promising strategy for the development of highly efficient heterostructure electrocatalysts toward OER.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Norskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:6321

    Article  Google Scholar 

  2. Huang J, Hao M, Mao B, Zheng L, Zhu J, Cao M (2022) The underlying molecular mechanism of fence engineering to break the activity-stability trade-off in catalysts for the hydrogen evolution reaction. Angew Chem Int 61:e202114899

    Article  CAS  Google Scholar 

  3. Zhu J, Hu L, Zhao P, Lee LYS, Wong KY (2020) Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev 120(2):851–918

    Article  PubMed  CAS  Google Scholar 

  4. Lei Y, Wang Y, Liu Y, Song C, Li Q, Wang D, Li Y (2022) Designing atomic active centers for hydrogen evolution electrocatalysts. Angew Chem Int Ed 59:20794–20812

    Article  Google Scholar 

  5. Zhao Y, Wang Y, Dong Y, Carlos C, Li J, Zhang Z, Li T, Shao Y, Yan S, Gu L et al (2021) Quasi-two-dimensional earth-abundant bimetallic electrocatalysts for oxygen evolution reactions. ACS Energy Lett 6(9):3367–3375

    Article  CAS  Google Scholar 

  6. Shi Q, Zhu C, Du D, Lin Y (2019) Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem Soc Rev 48(12):3181–3192

    Article  PubMed  CAS  Google Scholar 

  7. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365

    Article  PubMed  CAS  Google Scholar 

  8. Hunter BM, Gray HB, Muller AM (2016) Earth-abundant heterogeneous water oxidation catalysts. Chem Rev 116(22):14120–14136

    Article  PubMed  CAS  Google Scholar 

  9. Wang Y, Zheng X, Wang D (2021) Design concept for electrocatalysts. Nano Res 15:1730–1752

    Article  Google Scholar 

  10. Sun Z, Lin L, He J, Ding D, Wang T, Li J, Li M, Liu Y, Li Y, Yuan M (2022) Regulating the spin state of Fe(III) enhances the magnetic effect of the molecular catalysis mechanism. J Am Chem Soc 144(18):8204–8213

    Article  PubMed  CAS  Google Scholar 

  11. Chen J, Zhu J, Li S, Li Z, Wu C, Wang D, Luo Z, Li Y, Luo K (2022) In situ construction of FeCo alloy nanoparticles embedded in nitrogen-doped bamboo-like carbon nanotubes as a bifunctional electrocatalyst for Zn-air batteries. Dalton Trans 51:14498–14507

    Article  PubMed  CAS  Google Scholar 

  12. Guan D, Ryu G, Hu Z, Zhou J, Dong CL, Huang YC, Zhang K, Zhong Y, Komarek AC, Zhu M (2020) Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors. Nat Commun 11(1):3376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gao F, He J, Wang H, Lin J, Chen R, Yi K, Huang F, Lin Z, Wang M (2022) Te-mediated electro-driven oxygen evolution reaction. Nano Res Energy 1:e9120029

    Article  Google Scholar 

  14. Fang G, Wang Q, Zhou J, Lei Y, Chen Z, Wang Z, Pan A, Liang S (2019) Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13:5635–5645

    Article  PubMed  CAS  Google Scholar 

  15. Sun H, Tung CW, Qiu Y, Zhang W, Wang Q, Li Z, Tang J, Chen HC, Wang C, Chen HM (2022) Atomic metal-support interaction enables reconstruction-free dual-site electrocatalyst. J Am Chem Soc 144(3):1174–1186

    Article  PubMed  CAS  Google Scholar 

  16. Wang Q, Feng Q, Lei Y, Tang S, Xu L, Xiong Y, Fang G, Wang Y, Yang P, Liu J, Liu W, Xiong X (2022) Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat Commun 13:3689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Guo F, Zhang M, Yi S, Li X, Xin R, Yang M, Liu B, Chen H, Li H, Liu Y (2022) Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res Energy 1:e9120027

    Article  Google Scholar 

  18. Song F, Bai L, Moysiadou A, Lee S, Hu C, Liardet L, Hu X (2018) Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J Am Chem Soc 140(25):7748–7759

    Article  PubMed  CAS  Google Scholar 

  19. Chen J, Li S, Li Z, He G, Li Y (2022) Sulfur-doped CoFe (oxy)hydroxides synthesized by room-temperature activation for efficient oxygen evolution. Mater Lett 324:132641

    Article  CAS  Google Scholar 

  20. Chen L, Wang Y, Zhao X, Wang Y, Li Q, Wang Q, Tang Y, Lei Y (2022) Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting. J Mater Sci Technol 110:128–135

    Article  CAS  Google Scholar 

  21. Zhu J, Xiong Z, Zheng J, Luo Z, Zhu G, Xiao C, Meng Z, Li Y, Luo K (2019) Nitrogen-doped graphite encapsulated Fe/Fe3C nanoparticles and carbon black for enhanced performance towards oxygen reduction. J Mater Sci Technol 35(11):2543–2551

    Article  CAS  Google Scholar 

  22. Li SH, Qi MY, Tang ZR, Xu YJ (2021) Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chem Soc Rev 50(13):7539–7586

    Article  PubMed  CAS  Google Scholar 

  23. Jin H, Yu H, Li H, Davey K, Song T, Paik U, Qiao S-Z (2022) MXene analogue: a 2D nitridene solid solution for high-rate hydrogen production. Angew Chem Int Ed 61:e202203850

    Article  CAS  Google Scholar 

  24. Shi Y, Feng X, Guan H, Zhang J, Hu Z (2021) Porous sunflower plate-like NiFe2O4/CoNi–S heterostructure as efficient electrocatalyst for overall water splitting. Int J Hydrogen Energy 46(12):8557–8566

    Article  CAS  Google Scholar 

  25. Wu Z, Zou Z, Huang J, Gao F (2018) NiFe2O4 nanoparticles/NiFe layered double-hydroxide nanosheet heterostructure array for efficient overall water splitting at large current densities. ACS Appl Mater Interfaces 10(31):26283–26292

    Article  PubMed  CAS  Google Scholar 

  26. Fu Z, Liu S, Mai Z, Tang Z, Qin DD, Tian Y, Wang X (2020) Heterostructure and oxygen vacancies promote NiFe(2) O(4) /Ni(3) S(4) toward oxygen evolution reaction and Zn-Air batteries. Chem Asian J 15(21):3568–3574

    Article  PubMed  CAS  Google Scholar 

  27. Li X, Huang WQ, Xia LX, Li YY, Zhang HW, Ma SF, Wang YM, Wang XJ, Huang GF (2020) NiFe2O4/NiFeP heterostructure grown on nickel foam as an efficient electrocatalyst for water oxidation. ChemElectroChem 7(19):4047–4054

    Article  CAS  Google Scholar 

  28. Xu S, Yu X, Luo L, Li W, Du Y, Kong Q, Wu Q (2022) Multiscale manipulating induced flexible heterogeneous V-NiFe2O4@Ni2P electrocatalyst for efficient and durable oxygen evolution reaction. Nano Res 15(6):4942–4949

    Article  CAS  Google Scholar 

  29. Sun H, Min Y, Yang W, Lian Y, Lin L, Feng K, Deng Z, Chen M, Zhong J, Xu L (2019) Morphological and electronic tuning of Ni2P through iron doping toward highly efficient water splitting. ACS Catal 9(10):8882–8892

    Article  CAS  Google Scholar 

  30. Zhang Y, Tao L, Xie C, Wang D, Zou Y, Chen R, Wang Y, Jia C, Wang S (2020) Defect Engineering on Electrode Materials for Rechargeable Batteries. Adv Mater 32:e1905923

    Article  PubMed  Google Scholar 

  31. Lu Z, Wang J, Huang S, Hou Y, Li Y, Zhao Y, Mu S, Zhang J, Zhao Y (2017) N, B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. Nano Energy 42:334–340

    Article  CAS  Google Scholar 

  32. Liang J, Liu Q, Alshehri AA, Sun X (2022) Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res Energy 1:e9120010

    Article  Google Scholar 

  33. Kang J, Qiu X, Hu Q, Zhong J, Gao X, Huang R, Wan C, Liu L-M, Duan X, Guo L (2021) Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat Catal 4(12):1050–1058

    Article  CAS  Google Scholar 

  34. Chen Q, Wang R, Lu F, Kuang X, Tong Y, Lu X (2019) Boosting the oxygen evolution reaction activity of NiFe2O4 nanosheets by phosphate ion functionalization. ACS Omega 4:3493–3499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Shen Z-K, Cheng M, Yuan Y-J, Pei L, Zhong J, Guan J, Li X, Li Z-J, Bao L, Zhang X, Yu Z-T, Zou Z (2021) Identifying the role of interface chemical bonds in activating charge transfer for enhanced photocatalytic nitrogen fixation of Ni2P-black phosphorus photocatalysts. Appl Catal B Environ 295:120274

    Article  CAS  Google Scholar 

  36. Wei M, Lu W, Liu G, Jiang Y, Liu X, Bai L, Cao X, Jia J, Wu H (2021) Ni2P nanosheets: a high catalytic activity platform for electrochemical detection of acetaminophen. Chin J Chem 39:1849–1854

    Article  CAS  Google Scholar 

  37. Zhang Y, Yuan Z, Yu X, Hao Y, Zhao L (2022) 3D self-supporting porous NiFe2O4-Ni3P-Fe2P film with sea urchin-like structure for efficient oxygen evolution. J Electroanal Chem 904:115919

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the Wuhan Marine Electric Propulsion Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zhu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, W., Li, L. & Zhu, G. Interface Engineering of Oxygen-Vacancy-Rich VO-NiFe2O4@Ni2P Heterostructure for Highly Efficient Oxygen Evolution Reaction. Catal Lett 154, 593–600 (2024). https://doi.org/10.1007/s10562-023-04301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04301-6

Keywords

Navigation