Skip to main content
Log in

Surface reconstruction of heterostructures in alkaline medium towards enhanced electrocatalytic hydrogen evolution

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Constructing heterostructures has proved to be a successful strategy to fabricate electrocatalysts with high efficiency for water splitting. However, the structure evolution in alkaline hydrogen evolution reaction lacks investigation and the specific active center remains disputable. Herein, we take the well-designed Ni3S2@VO2 heterostructures as a model to investigate the electrocatalytic activity and the surface reconstruction process of heterostructure catalysts in alkaline electrolyte. The Ni3S2@VO2 heterostructures, with Ni3S2 nanorods as the core and VO2 nanoflakes as the shell, coupled with the high conductive Ni3S2, the hydrophilic VO2 and modulated electronic structures at the interfaces, exhibited prominent activity and superior stability at various current densities. Further, the ex-situ characterizations confirmed that the surface reconstruction from Ni3S2@VO2 into Ni3S2@amorphous-Ni(OH)2 in alkaline media could optimize the water dissociation barrier and exposed large active area, thereby contributing to improved electrocatalytic performance. Our study not only introduces novel high-performance electrocatalysts for hydrogen evolution reaction (HER), but also provides a new avenue for re-examining hetero-structural catalysts in alkaline solutions.

Graphical abstract

摘要

构建异质结构是制备高效水分解电催化剂的有效方法。然而, 碱性析氢反应的结构演化缺乏研究, 且实际的活性中心也存在争议。本文以精心设计的Ni3S2@VO2异质结构为模型, 研究了异质结构催化剂在碱性电解液中的电催化活性和表面重构过程。以Ni3S2纳米棒为核心、VO2纳米片为壳层的Ni3S2@VO2异质结构, 具有高导电性的Ni3S2、亲水性的VO2和界面处的电子结构调制, 在不同电流密度下表现出突出的活性和优异的稳定性。此外, 非原位表征证实了在碱性介质中从Ni3S2@VO2到Ni3S2@非晶态Ni(OH)2的表面重构可以优化水解离能垒, 并提供较大的活性区域, 从而有助于提高电催化性能。本工作不仅设计了一种新颖的高性能电解水催化剂, 而且为重新研究碱性溶液中的异质结构催化剂提供了新的途径。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang CT, Liu Q, Wang PY, Zhu JW, Chen D, Yang Y, Zhao YF, Pu ZH, Mu SC. Molybdenum carbide-PtCu nanoalloy heterostructures on MOF-derived carbon toward efficient hydrogen evolution. Small. 2021;17:2104241. https://doi.org/10.1002/smll.202104241.

    Article  CAS  Google Scholar 

  2. Shen RF, Liu YY, Wen H, Wu XL, Han GS, Yue XZ, Mehdi S, Liu T, Cao HQ, Liang EJ, Li BJ. Engineering bimodal oxygen vacancies and Pt to boost the activity toward water dissociation. Small.2021;18:2105588. https://doi.org/10.1002/smll.202105588.

    Article  CAS  Google Scholar 

  3. Li XZ, Fang YY, Wang J, Fang HY, Xi SB, Zhao XX, Xu DY, Xu HM, Yu W, Hai X, Chen C, Yao CH, Tao HB, Howe AGR, Pennycook SJ, Liu B, Lu J, Su CL. Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis. Nat Commun. 2021;12(1):2351. |https://doi.org/10.1038/s41467-021-22681-4

  4. Wang JH, Yang SW, Ma FB, Zhao SN, Xiong ZY, Dong C, Shen HD, Zhu K, Zhang QY, Cao YL, Wang TS, Zhang HP. RuCo alloy nanoparticles embedded within N-doped porous two-dimensional carbon nanosheets: a high-performance hydrogen evolution reaction catalyst. Tungsten. 2024;6(1):114. https://doi.org/10.1007/s42864-023-00223-3.

  5. Chen ZJ, Duan XG, Wei W, Wang SB, Ni BJ. Iridium-based nanomaterials for electrochemical water splitting. Nano Energy. 2020;78:105270. https://doi.org/10.1016/j.nanoen.2020.105270.

    Article  CAS  Google Scholar 

  6. Xu XH, Zhang YJ, Miao XY. Synthesis and electrocatalytic performance of 3D coral-like NiCo-P. Chin J Rare Met. 2022,46(11):1449. https://doi.org/10.13373/j.cnki.cjrm.XY22080001.

  7. Fang XJ, Ren LP, Li F, Jiang ZX, Wang ZG. Modulating electronic structure of CoSe2 by Ni doping for efficient electrocatalyst for hydrogen evolution reaction. Rare Met. 2022;41(3):901. https://doi.org/10.1007/s12598-021-01819-9.

    Article  CAS  Google Scholar 

  8. Yao N, Meng R, Wu F, Fan ZY, Cheng GZ, Luo W. Oxygen-vacancy-induced CeO2/Co4N heterostructures toward enhanced pH-universal hydrogen evolution reactions. Appl Catal B. 2020;277:119282. https://doi.org/10.1016/j.apcatb.2020.119282.

    Article  CAS  Google Scholar 

  9. Shi LY, Bai WC, Deng Y, Sun JF, Zhang SF. Modification of Cu-based electrocatalysts and their research progress for electrochemical hydrogen evolution reaction. Copper Engineering. 2023(6):51.

  10. Wu SS, Zhu YG, Huo YF, Luo YC, Zhang LH, Wan Y, Nan B, Cao LJ, Wang ZY, Li MC, Yang MY, Cheng H, Lu ZG. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci China Mater. 2017;60(7):654. https://doi.org/10.1007/s40843-017-9041-0.

    Article  CAS  Google Scholar 

  11. Zeng HB, Chen SQ, Jin YQ, Li JW, Song JD, Le ZC, Liang GF, Zhang H, Xie FY, Chen J, Jin YS, Chen XB, Meng H. Electron density modulation of metallic MoO2 by Ni doping to produce excellent hydrogen evolution and oxidation activities in acid. ACS Energy Lett. 2020;5(6):1908. https://doi.org/10.1021/acsenergylett.0c00642.

    Article  CAS  Google Scholar 

  12. Li XY, Xiao LP, Zhou L, Xu QC, Weng J, Xu J, Liu B. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide @ 2D black phosphorus for overall water splitting. Angew Chem Int Ed Engl. 2020;132(47):21292. https://doi.org/10.1002/ange.202008514.

    Article  Google Scholar 

  13. Liu D, Tong R, Qu YJ, Zhu Q, Zhong XW, Fang ML, Ho Lo K, Zhang FF, Ye YC, Tang YX, Chen S, Xing GC, Pan H. Highly improved electrocatalytic activity of NiSx: effects of Cr-doping and phase transition. Appl Catal B. 2020;267:118721. https://doi.org/10.1016/j.apcatb.2020.118721

    Article  CAS  Google Scholar 

  14. Zhang JJ, Zhang CH, Wang ZY, Zhu J, Wen ZW, Zhao XZ, Zhang XX, Xu J, Lu ZG. Synergistic interlayer and defect engineering in VS2 nanosheets toward efficient electrocatalytic hydrogen evolution reaction. Small. 2018;14(9):1703098. https://doi.org/10.1002/smll.201703098.

    Article  CAS  Google Scholar 

  15. Tan JW, Zhang WB, Shu YJ, Lu HY, Tang Y, Gao QS. Interlayer engineering of molybdenum disulfide toward efficient electrocatalytic hydrogenation. Sci Bull. 2021;66(10):1003. https://doi.org/10.1016/j.scib.2020.11.002.

    Article  CAS  Google Scholar 

  16. Yang MY, Shang CQ, Li FF, Liu C, Wang ZY, Gu S, Liu D, Cao LJ, Zhang JJ, Lu ZG, Pan H. Synergistic electronic and morphological modulation on ternary Co1-xVxP nanoneedle arrays for hydrogen evolution reaction with large current density. Sci China Mater. 2021;64(4):880. https://doi.org/10.1007/s40843-020-1495-x.

    Article  CAS  Google Scholar 

  17. Huang C, Zhang XL, Tang J, Li D, Ruan QD, Liu LL, Xiong FY, Wang B, Xu Y, Cui SH, Luo Y, Li QW, Chu PK. Spatially strain-induced and selective preparation of MoxN (x=1, 2) as a highly effective nanoarchitectonic catalyst for hydrogen evolution reaction in a wide pH range. Rare Met. 2023;42(5):1446. https://doi.org/10.1007/s12598-022-02227-3.

  18. Chen CQ, Fan XS, Zhou C, Lin L, Luo Y, Au CT, Cai GH, Wang XY, Jiang LL. Hydrogen production from ammonia decomposition over Ni/CeO2 catalyst: effect of CeO2 morphology. J Rare Earths. 2023;41(7):1014. https://doi.org/10.1016/j.jre.2022.05.001.

  19. Chen Q, Jin JL, Kou ZK, Jiang JM, Fu YL, Liu ZA, Zhou L, Mai LQ. Cobalt-doping in hierarchical Ni3S2 nanorod arrays enables high areal capacitance. J Mater Chem A. 2020;8(26):13114. https://doi.org/10.1039/D0TA04483K.

    Article  CAS  Google Scholar 

  20. Zhang RB, Tu ZA, Meng S, Feng G, Lu ZH, Yu YZ, Reina TR, Hu FY, Chen XH, Ye RP. Engineering morphologies of yttrium oxide supported nickel catalysts for hydrogen production. Rare Met.2023;42(1):176. https://doi.org/10.1007/s12598-022-02136-5.

    Article  CAS  Google Scholar 

  21. Feng LL, Yu GT, Wu YY, Li GD, Li H, Sun YH, Asefa T, Chen W, Zou XX. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc. 2015;137(44):14023. https://doi.org/10.1021/jacs.5b08186.

    Article  CAS  PubMed  Google Scholar 

  22. Sun R, Su ZH, Zhao ZF, Yang MQ, Li TS, Zhao JX, Shang YC. Ni3S2 nanocrystals in-situ grown on Ni foam as highly efficient electrocatalysts for alkaline hydrogen evolution. Rare Met. 2023;42(10):3420. https://doi.org/10.1007/s12598-023-02337-6.

  23. Liu H, Cheng JN, He WJ, Li Y, Mao J, Zheng XR, Chen C, Cui CX, Hao QY. Interfacial electronic modulation of Ni3S2 nanosheet arrays decorated with Au nanoparticles boosts overall water splitting. Appl Catal B. 2021;304:120935. https://doi.org/10.1016/j.apcatb.2021.120935.

    Article  CAS  Google Scholar 

  24. Yan D, Xiao SH, Li XY, Jiang JX, He QY, Li HC, Qin JQ, Wu R, Niu XB, Chen JS. NiS2/FeS heterostructured nanoflowers for high-performance sodium storage. Energy Mater Adv. 2023;4:0012. https://doi.org/10.34133/energymatadv. 0012

  25. He LQ, Zhang WB, Mo QJ, Huang WJ, Yang LC, Gao QS. Molybdenum carbide-oxide heterostructures: in situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution. Angew Chem Int Ed Engl. 2020;59(9):3544. https://doi.org/10.1002/ange.201914752.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang HH, Ren YB, Yuan ZL, Kang NX, Mehdi S, Xing CC, Liu XY, Fan YP, Li BJ, Liu BZ. Interfacial active sites on Co-Co2C@carbon heterostructure for enhanced catalytic hydrogen generation. Rare Met. 2023;42(6):1935. https://doi.org/10.1007/s12598-022-02224-6.

  27. Yang MY, Zhao MX, Yuan J, Luo JX, Zhang JJ, Lu ZG, Chen DZ, Fu XL, Wang L, Liu C. Oxygen vacancies and interface engineering on amorphous/crystalline CrOx-Ni3N heterostructures toward high-durability and kinetically accelerated water splitting. Small. 2022;13:2106554. https://doi.org/10.1002/smll.202106554.

    Article  CAS  Google Scholar 

  28. Gao XR, Liu XM, Zang WJ, Dong HL, Pang YJ, Kou ZK, Wang PY, Pan ZH, Wei SR, Mu SC, Wang J. Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. Nano Energy. 2020;78:105355. https://doi.org/10.1016/j.nanoen.2020.105355.

    Article  CAS  Google Scholar 

  29. Zhou WJ, Cao XH, Zeng ZY, Shi WH, Zhu YY, Yan QY, Liu H, Wang JY, Zhang H. One-step synthesis of Ni3S2 nanorod @Ni(OH)2 nanosheet core-shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci. 2013;6(7):2216. https://doi.org/10.1039/C3EE40155C.

    Article  CAS  Google Scholar 

  30. Zheng D, Yu LH, Liu WX, Dai XJ, Niu XX, Fu WQ, Shi WH, Wu FF, Cao XH. Structural advantages and enhancement strategies of heterostructure water-splitting electrocatalysts. Cell Rep Phys Sci. 2021;2:100443. https://doi.org/10.1016/j.xcrp.2021.100443.

    Article  CAS  Google Scholar 

  31. Zhao GQ, Rui K, Dou SX, Sun WP. Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv Funct Mater. 2018;28(43):1803291. https://doi.org/10.1002/adfm.201803291.

    Article  CAS  Google Scholar 

  32. Li DR, Wan WJ, Wang ZW, Wu HY, Wu SX, Jiang T, Cai GX, Jiang CZ, Ren F. Self-derivation and surface reconstruction of Fe-doped Ni3S2 electrode realizing high-efficient and stable overall water and urea electrolysis. Adv Energy Mater. 2022;12(39):2201913. https://doi.org/10.1002/aenm.202201913.

    Article  CAS  Google Scholar 

  33. Wu Y, Li Y, Yuan M, Hao H, San X, Lv Z, Xu L, Wei B. Operando capturing of surface self-reconstruction of Ni3S2/FeNi2S4 hybrid nanosheet array for overall water splitting. Chem Eng J. 2022;427:131944. https://doi.org/10.1016/j.cej.2021.131944.

    Article  CAS  Google Scholar 

  34. Huang C, Zhang B, Wu YZ, Ruan QD, Liu LL, Su JJ, Tang YQ, Liu RG, Chu PK. Experimental and theoretical investigation of reconstruction and active phases on honeycombed Ni3N-Co3N/C in water splitting. Appl Catal B. 2021;297:120461. https://doi.org/10.1016/j.apcatb.2021.120461.

    Article  CAS  Google Scholar 

  35. Liu D, Ai HQ, Li JL, Fang ML, Chen MP, Liu D, Du XY, Zhou PF, Li FF, Lo KH, Tang YX, Chen S, Wang L, Xing GC, Pan H. Surface reconstruction and phase transition on vanadium-cobalt-iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation. Adv Energy Mater. 2020;10(45):2002464. https://doi.org/10.1002/aenm.202002464.

    Article  CAS  Google Scholar 

  36. Jiang HL, He Q, Zhang YK, Song L. Structural self-reconstruction of catalysts in electrocatalysis. Acc Chem Res. 2018;51(11):2968. https://doi.org/10.1021/acs.accounts.8b00449.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Gao L, Hensen EJM, Hofmann JP. Evaluating the stability of Co2P electrocatalysts in the hydrogen evolution reaction for both acidic and alkaline electrolytes. ACS Energy Lett. 2018;3(6):1360. https://doi.org/10.1021/acsenergylett.8b00514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao DF, Sheng BB, Qi ZH, Xu WJ, Chen SM, Moses OA, Long R, Xiong YJ, Wu XJ, Song L. Self-optimizing iron phosphorus oxide for stable hydrogen evolution at high current. Appl Catal B. 2021;298:120559. https://doi.org/10.1016/j.apcatb.2021.120559.

    Article  CAS  Google Scholar 

  39. Pi CR, Zhao ZY, Zhang XM, Gao B, Zheng Y, Chu PK, Yang LJ, Huo KF. In situ construction of γ-MoC/VN heterostructured electrocatalysts with strong electron coupling for highly efficient hydrogen evolution reaction. Chem Eng J. 2021;416:129130. https://doi.org/10.1016/j.cej.2021.129130.

    Article  CAS  Google Scholar 

  40. Zhang Q, Liu BQ, Li L, Ji Y, Wang CG, Zhang LY, Su ZM. Maximized Schottky effect: the ultrafine V2O3/Ni heterojunctions repeatedly arranging on monolayer nanosheets for efficient and stable water-to-hydrogen conversion. Small. 2021;17(13):2005769. https://doi.org/10.1002/smll.202005769.

    Article  CAS  Google Scholar 

  41. Zhong XW, Zhang LF, Tang J, Chai JW, Xu JC, Cao LJ, Yang M-Y, Yang M, Kong WG, Wang SJ, Cheng H, Lu ZG, Cheng C, Xu BM, Pan H. Efficient coupling of hierarchical V2O5@Ni3S2 hybrid nanoarray for pseudocapacitors and hydrogen production. J Mater Chem A. 2017;5:17954. https://doi.org/10.1039/C7TA04755J.

    Article  CAS  Google Scholar 

  42. Pu J, Gao Y, Cao QH, Fu GW, Chen X, Pan ZH, Guan C. Vanadium metal-organic framework-derived multifunctional fibers for asymmetric supercapacitor, piezoresistive sensor, and electrochemical water splitting. SmartMat. 2022;3(4):608. https://doi.org/10.1002/smm2.1088.

    Article  CAS  Google Scholar 

  43. Zheng XZ, Qin MK, Ma SX, Chen YZ, Ning HH, Yang R, Mao SJ, Wang Y. Strong oxide-support interaction over IrO2/V2O5 for efficient pH-universal water splitting. Adv Sci. 2022;9(11):2104636. https://doi.org/10.1002/advs.202104636.

    Article  CAS  Google Scholar 

  44. Du HM, Ding FF, Zhao JS, Zhang XX, Li YW, Zhang Y, Li J, Yang XF, Li K, Yang YQ. Core-shell structured Ni3S2@VO2 nanorods grown on nickel foam as battery-type materials for supercapacitors. Appl Surf Sci. 2020;508:144876. https://doi.org/10.1016/j.apsusc.2019.144876.

    Article  CAS  Google Scholar 

  45. Liu N, Xiong SJ, Peng X. Oxygen evolution reaction property of cobalt vanadate nanosheets. Chin J Rare Met. 2022,46(6):839. https://doi.org/10.13373/j.cnki.cjrm.XY21070006.

  46. Yang MY, Cheng H, Gu YY, Sun ZF, Hu J, Cao LJ, Lv FC, Li MC, Wang WX, Wang ZY, Wu SF, Liu HT, Lu ZG. Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors. Nano Res. 2015;8(8):2744. https://doi.org/10.1007/s12274-015-0781-3

  47. Yang MY, Fu XL, Shao MM, Wang ZY, Cao LJ, Gu S, Li MC, Cheng H, Li YC, Pan H, Lu ZG. Cobalt-vanadium hydroxide nanoneedles with a free-standing structure as high-performance oxygen evolution reaction electrocatalysts. ChemElectroChem. 2019;6(7):2050. https://doi.org/10.1002/celc.201900415.

    Article  CAS  Google Scholar 

  48. Qu YJ, Yang MY, Chai JW, Tang Z, Shao MM, Kwok CT, Yang M, Wang ZY, Chua D, Wang SJ, Lu ZG, Pan H. Facile synthesis of vanadium-doped Ni3S2 nanowire arrays as active electrocatalyst for hydrogen evolution reaction. ACS Appl Mater Interfaces. 2017;9(7):5959. https://doi.org/10.1021/acsami.6b13244.

    Article  CAS  PubMed  Google Scholar 

  49. Hu J, Zhang CX, Zhang YZ, Yang BM, Qi QL, Sun MZ, Zi FT, Leung MKH, Huang BL. Interface modulation of MoS2/metal oxide heterostructures for efficient hydrogen evolution electrocatalysis. Small. 2020;16(28):2002212. https://doi.org/10.1002/smll.202002212.

    Article  CAS  Google Scholar 

  50. Zhou P, Zhai GY, Lv XS, Liu YY, Wang ZY, Wang P, Zheng ZK, Cheng HF, Dai Y, Huang BL. Boosting the electrocatalytic HER performance of Ni3N-V2O3 via the interface coupling effect. Appl Catal B. 2021;283:119590. https://doi.org/10.1016/j.apcatb.2020.119590.

    Article  CAS  Google Scholar 

  51. Huang SC, Meng YY, Cao YF, Yao F, He ZJ, Wang XX, Pan H, Wu MM. Amorphous NiWO4 nanoparticles boosting the alkaline hydrogen evolution performance of Ni3S2 electrocatalysts. Appl Catal B. 2020;274:119120. https://doi.org/10.1016/j.apcatb.2020.119120.

    Article  CAS  Google Scholar 

  52. Hu EL, Feng YF, Nai JW, Zhao D, Hu Y, Lou XW. Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ Sci. 2018;11(4):872. https://doi.org/10.1039/C8EE00076J.

    Article  CAS  Google Scholar 

  53. Chen Y, Rao Y, Wang RZ, Yu YN, Li QL, Bao SJ, Xu MW, Yue Q, Zhang YN, Kang YJ. Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction. Nano Res. 2020;13(9):2407. https://doi.org/10.1007/s12274-020-2865-y

  54. Xing YP, Zhao G, Qiu SP, Hao SH, Huang JZ, Ma WX, Yang PZ, Wang XK, Xu XJ. Engineering interfacial coupling between 3D net-like Ni3(VO4)2 ultrathin nanosheets and MoS2 on carbon fiber cloth for boostinghydrogen evolution reaction. J Colloid Interf Sci. 2021;611:336. https://doi.org/10.1016/j.jcis.2021.12.100.

    Article  CAS  Google Scholar 

  55. Chang P, Zhang S, Xu XM, Lin YF, Chen XY, Guan LX, Tao JG. Facile synthesis of MoS2/Ni2V3O8 nanosheets for pH-universal efficient hydrogen evolution catalysis. Chem Eng J. 2021;423:130196.

    Article  CAS  Google Scholar 

  56. Chen HL, Yu ZB, Jiang RH, Huang J, Hou YP, Zhang YQ, Zhu HX, Wang B, Wang M, Tang WJ. Sulfur defects rich Mo-Ni3S2 QDs assisted by O-C=O chemical bonding for efficient electrocatalytic overall water splitting. Nanoscale. 2021;13:6644. https://doi.org/10.1039/D1NR00605C.

    Article  CAS  PubMed  Google Scholar 

  57. Tong X, Li Y, Pang N, Qu YH, Yan CH, Xiong DY, Xu SH, Wang LW, Chu PK. Co-doped Ni3S2 porous nanocones as high-performance bifunctional electrocatalysts in water splitting. Chem Eng J. 2021;425:130455. https://doi.org/10.1016/j.cej.2021.130455.

    Article  CAS  Google Scholar 

  58. Yan L, Xie BB, Yang C, Wang YH, Ning JQ, Zhong YJ, Hu Y. Engineering Self-supported hydrophobic–aerophilic air cathode with CoS/Fe3S4 nanoparticles embedded in S, N co-doped carbon plate arrays for long-life rechargeable Zn–air batteries. Adv Energy Mater. 2023;13(10):2204245. https://doi.org/10.1002/aenm.202204245.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Basic and Applied Basic Research Project of Guangdong Province (Nos. 2022A1515011438 and 2023A1515011055), Key Project of Shenzhen Basic Research (No. JCYJ2022081800003006), Basic Research Project of the Science and Technology Innovation Commission of Shenzhen (No. JCYJ20220531101013028), Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (No. ZDSYS20200421111401738), and China Postdoctoral Science Foundation (No. 2022M722168). The authors appreciate Instrumental Analysis Center of Shenzhen University (Lihu Campus) for providing equipment for material characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhou-Guang Lu or Chen Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3157 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, MY., Yuan, J., Fu, XL. et al. Surface reconstruction of heterostructures in alkaline medium towards enhanced electrocatalytic hydrogen evolution. Rare Met. 43, 2636–2647 (2024). https://doi.org/10.1007/s12598-024-02625-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-024-02625-9

Keywords

Navigation