Skip to main content

Advertisement

Log in

Mild Oxidation of Methane to Oxygenates with O2 and CO on Fluorine Modified TS-1 Supported Rh Single-Atom Catalyst in a Flow Reactor

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Direct catalytic conversion of methane to liquid oxygenates under mild conditions remains a challenge due to high bond energy of symmetric CH4. Isolated Rh atoms were supported on hydrophobic fluorine modified TS-1 (FTS-1). Single-atom Rh on FTS-1 catalyst was characterized with Ac-HAADF/STEM and CO adsorption FTIR. The aerobic selective conversion of methane to oxygenates was carried out in a fixed bed continuous flow reactor upon co-feeding CO and H2O at 423 K under relative low pressure (42.3 kPa CH4, 21.1 kPa CO, 10.6 kPa O2, 0.476 MPa H2O). Hydrophobic Rh/FTS-1 catalyst exhibits higher activity (151.9 molproducts/(molmetalh)) than the activity (36.4 molproducts/(molmetalh)) over hydrophilic Rh-ZSM-5 (Si/Al = 15) under such reaction conditions. Hydrophobicity of different catalysts were compared by water adsorption test. The catalytic activity of F modified TS-1 supported single-atom Rh (Rh/FTS-1) is higher than that of unmodified Rh/TS-1 which is due to its higher Lewis acidity as shown by pyridine adsorption FTIR and NH3-TPD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. Schwach P, Pan X, Bao X (2017) Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem Rev 117:8497–8520. https://doi.org/10.1021/acs.chemrev.6b00715

    Article  PubMed  CAS  Google Scholar 

  2. Liu CC, Mou CY, Yub SSF, Chan SI (2016) Heterogeneous formulation of the tricopper complex for efficient catalytic conversion of methane into methanol at ambient temperature and pressure. Energy Environ Sci 9:1361–1374. https://doi.org/10.1039/C5EE03372A

    Article  CAS  Google Scholar 

  3. Tsai ML, Hadt RG, Vanelderen P, Sels BF, Schoonheydt RA, Solomon EI (2014) [Cu2O]2+ active site formation in Cu-ZSM-5: geometric and electronic structure requirements for N2O activation. J Am Chem Soc 136:3522–3529. https://doi.org/10.1021/ja4113808

    Article  PubMed  CAS  Google Scholar 

  4. Snyder BER, Vanelderen P, Bols ML, Hallaert SD, Bottger LH, Ungur L, Pierloot K, Schoonheydt RA, Sels BF, Solomon EI (2016) The active site of low-temperature methane hydroxylation in Iron-containing zeolites. Nature 536:317–321. https://doi.org/10.1038/nature19059

    Article  PubMed  CAS  Google Scholar 

  5. Hammond C, Forde MM, Rahim MHA, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF, Murphy DM, Carley AF, Taylor SH, Willock DJ, Stangland EE, Kang J, Hagen H, Kiely CJ, Hutchings GJ (2012) Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew Chem Int Ed 51:5129–5133. https://doi.org/10.1002/anie.201108706

    Article  CAS  Google Scholar 

  6. Kalamaras C, Palomas D, Bos R, Horton A, Crimmin M, Hellgardt K (2016) Selective oxidation of methane to methanol over Cu- and Fe-exchanged zeolites: the effect of Si/Al molar ratio. Catal Lett 146:483–492. https://doi.org/10.1007/s10562-015-1664-7

    Article  CAS  Google Scholar 

  7. Cui X, Li H, Wang Y, Hu Y, Hua L, Li H, Han X, Liu Q, Yang F, He L, Chen X, Li Q, Xiao J, Deng D, Bao X (2018) Room-temperature methane conversion by graphene-confined single iron atoms. Chem 4:1902–1910. https://doi.org/10.1016/j.chempr.2018.05.006

    Article  CAS  Google Scholar 

  8. Huang W, Zhang S, Tang Y, Li Y, Nguyen L, Li Y, Shan J, Xiao D, Gagne R, Frenkel AI, Tao F (2016) Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate. Angew Chem Int Ed 55:13441–13445. https://doi.org/10.1002/anie.201604708

    Article  CAS  Google Scholar 

  9. Bai S, Liu F, Huang B, Li F, Lin H, Wu T, Sun M, Wu J, Shao Q, Xu Y, Huang X (2020) High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst. Nat Commun 11:954. https://doi.org/10.1038/s41467-020-14742-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lewis RJ, Bara-Estaun A, Agarwal N, Freakley SJ, Morgan DJ, Hutchings GJ (2019) The direct synthesis of H2O2 and selective oxidation of methane to methanol using HZSM-5 supported AuPd catalysts. Catal Lett 149:3066–3075. https://doi.org/10.1007/s10562-019-02876-7

    Article  CAS  Google Scholar 

  11. Jin Z, Wang L, Zuidema E, Mondal K, Zhang M, Zhang J, Wang C, Meng X, Yang H, Mesters C, Xiao FS (2020) Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367:193–197. https://doi.org/10.1126/science.aaw1108

    Article  PubMed  CAS  Google Scholar 

  12. Bai S, Yao Q, Xu Y, Cao K, Huang X (2020) Strong synergy in a lichen-like RuCu nanosheet boosts the direct methane oxidation to methanol. Nano Energy 71:104566. https://doi.org/10.1016/j.nanoen.2020.104566

    Article  CAS  Google Scholar 

  13. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) Selective oxidation of methane by the bis(u-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J Am Chem Soc 127:1394–1395. https://doi.org/10.1021/ja047158u

    Article  PubMed  CAS  Google Scholar 

  14. Smeets PJ, Groothaert MH, Schoonheydt RA (2005) Cu based zeolites: a UV-vis study of the active site in the selective methane oxidation at low temperatures. Catal Today 110:303–309. https://doi.org/10.1016/j.cattod.2005.09.028

    Article  CAS  Google Scholar 

  15. Sushkevich VL, Palagin D, Ranocchiari M, van Bokhoven JA (2017) Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356:523–527. https://doi.org/10.1126/science.aam9035

    Article  PubMed  CAS  Google Scholar 

  16. Lustemberg PG, Palomino RM, Gutiérrez RA, Grinter DC, Vorokhta M, Liu Z, Ramírez PJ, Matolín V, Ganduglia-Pirovano MV, Senanayake SD, Rodriguez JA (2018) Direct conversion of methane to methanol on Ni-Ceria surfaces: metal-support interactions and water-enabled catalytic conversion by site blocking. J Am Chem Soc 140:7681–7687. https://doi.org/10.1021/jacs.8b03809

    Article  PubMed  CAS  Google Scholar 

  17. Zuo Z, Ramírez PJ, Senanayake SD, Liu P, Rodriguez JA (2016) Low-temperature conversion of methane to methanol on CeOx/Cu2O catalysts: water controlled activation of the C−H bond. J Am Chem Soc 138:13810–13813. https://doi.org/10.1021/jacs.6b08668

    Article  PubMed  CAS  Google Scholar 

  18. Liu Z, Huang E, Orozco I, Liao W, Palomino RM, Rui N, Duchon T, Nemšák S, Grinter DC, Mahapatra M, Liu P, Rodriguez JA, Senanayake SD (2020) Water-promoted interfacial pathways in methane oxidation to methanol on a CeO2-Cu2O catalyst. Science 368(2020):513–517. https://doi.org/10.1126/science.aba5005

    Article  PubMed  CAS  Google Scholar 

  19. Mahlaba SVL, Mahomed NHL, Govender A, Guo J, Leteba GM, Cilliers PL, van Steen E (2022) Platinum-catalysed selective aerobic oxidation of methane to formaldehyde in the presence of liquid water. Angew Chem Int Ed 61:e202206841. https://doi.org/10.1002/anie.202206841

    Article  CAS  Google Scholar 

  20. Shan J, Li M, Allard LF, Lee S, Flytzani-Stephanopoulos M (2017) Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551(2017):605–608. https://doi.org/10.1038/nature24640

    Article  PubMed  CAS  Google Scholar 

  21. Tang Y, Li Y, Fung V, Jiang D, Huang W, Zhang S, Iwasawa Y, Sakata T, Nguyen L, Zhang X, Frenke AI, Tao F (2018) Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nat Commun 9:1231–1241. https://doi.org/10.1038/s41467-018-03235-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Moteki T, Tominaga N, Ogura M (2020) CO-assisted direct methane conversion into C1 and C2 oxygenates over ZSM-5 supported transition and platinum group metal catalysts using oxygen as an oxidant. ChemCatChem 12:2957–2961. https://doi.org/10.1002/cctc.202000168

    Article  CAS  Google Scholar 

  23. Li M, Shan J, Giannakakis G, Ouyang M, Cao S, Lee S, Allard LF, Flytzani-Stephanopoulos M (2021) Single-step selective oxidation of methane to methanol in the aqueous phase on iridium-based catalysts. Appl Catal B 292:120124. https://doi.org/10.1016/j.apcatb.2021.120124

    Article  CAS  Google Scholar 

  24. Qi G, Davies TE, Nasrallah A, Sainna MA, Howe AGR, Lewis RJ, Quesne M, Catlow CRA, Willock DJ, He Q, Bethell D, Howard MJ, Murrer BA, Harrison B, Kiely CJ, Zhao X, Deng F, Xu J, Hutchings GJ (2022) Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat Catal 5:45–54. https://doi.org/10.1038/s41929-021-00725-8

    Article  CAS  Google Scholar 

  25. Moteki T, Tominaga N, Ogura M (2022) Mechanism investigation and product selectivity control on CO-assisted direct conversion of methane into C1 and C2 oxygenates catalyzed by zeolite-supported Rh. Appl Catal B 300:120742. https://doi.org/10.1016/j.apcatb.2021.120742

    Article  CAS  Google Scholar 

  26. Li B, Song X, Feng S, Yuan Q, Jiang M, Yan L, Ding Y (2021) Direct conversion of methane to oxygenates on porous organic polymers supported Rh mononuclear complex catalyst under mild conditions. Appl Catal B 293:120208. https://doi.org/10.1016/j.apcatb.2021.120208

    Article  CAS  Google Scholar 

  27. Wang H, Xin W, Wang Q, Zheng X, Lu Z, Pei R, He P, Dong X (2022) Direct methane conversion with oxygen and CO over hydrophobic dB-ZSM-5 supported Rh single-atom catalyst. Catal Commun 162:106374. https://doi.org/10.1016/j.catcom.2021.106374

    Article  CAS  Google Scholar 

  28. Taramasso M, Perego G, Notari B, US Patent 4,410,501, 1983

  29. Huang E, Orozco I, Ramírez PJ, Liu Z, Zhang F, Mahapatra M, Nemšák S, Senanayake SD, Rodriguez JA, Liu P (2021) Selective methane oxidation to methanol on ZnO/Cu2O/Cu(111) catalysts: multiple site-dependent behaviors. J Am Chem Soc 143:19018–19032. https://doi.org/10.1021/jacs.1c08063

    Article  PubMed  CAS  Google Scholar 

  30. Luo L, Luo J, Li H, Ren G, Zhang Y, Lu A, Li WX, Zeng J (2021) Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nat Commun 12:1218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Latimer AA, Kakekhani A, Kulkarni AR, Nørskov JK (2018) Direct methane to methanol: the selectivity−conversion limit and design strategies. ACS Catal 8:6894–6907. https://doi.org/10.1021/acscatal.8b00220

    Article  CAS  Google Scholar 

  32. Bunting RJ, Rice PS, Thompson J, Hu P (2021) Investigating the innate selectivity issues of methane to methanol: consideration of an aqueous environment. Chem Sci 12(2021):4443–4449. https://doi.org/10.1039/D0SC05402J

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Na K, Jo C, Kim J, Ahn WS, Ryoo R (2011) MFI Titanosilicate nanosheets with single-unit-cell thickness as an oxidation catalyst using peroxides. ACS Catal 1:901–907. https://doi.org/10.1021/cs2002143

    Article  CAS  Google Scholar 

  34. Kim SK, Reddy BM, Park SE (2018) High-performance microwave synthesized mesoporous TS-1 zeolite for catalytic oxidation of cyclic olefins. Ind Eng Chem Res 57:3567–3574. https://doi.org/10.1021/acs.iecr.7b04556

    Article  CAS  Google Scholar 

  35. Abello´ S, Pe´rez-Ramı´re J (2009) Accelerated generation of intracrystalline mesoporosity in zeolites by microwave-mediated desilication. Phys Chem Chem Phys 11:2959–2963. https://doi.org/10.1039/B819543A

    Article  PubMed  Google Scholar 

  36. Resasco J, Dai S, Graham G, Pan X, Christopher P (2018) Combining in-situ transmission electron microscopy and infrared spectroscopy for understanding dynamic and atomic-scale features of supported metal catalysts. J Phys Chem C 122:25143–25157. https://doi.org/10.1021/acs.jpcc.8b03959

    Article  CAS  Google Scholar 

  37. Ivanova E, Hadjiivanov K (2003) Polycarbonyls of Rh+ formed after interaction of CO with Rh–MFI: an FTIR spectroscopic study. Phys Chem Chem Phys 5(2003):655–661. https://doi.org/10.1039/b210711b

    Article  CAS  Google Scholar 

  38. Lang R, Li T, Matsumura D, Miao S, Ren Y, Cui YT, Tan Y, Qiao B, Li L, Wang A, Wang X, Zhang T (2016) Hydroformylation of olefins by a Rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew Chem 128:16288–16292. https://doi.org/10.1002/anie.201607885

    Article  CAS  Google Scholar 

  39. Matsubu JC, Yang VN, Christopher P (2015) Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J Am Chem Soc 137:3076–3084. https://doi.org/10.1021/ja5128133

    Article  PubMed  CAS  Google Scholar 

  40. Narsimhan K, Michaelis VK, Mathies G, Gunther WR, Griffin RG, Román-Leshkov Y (2015) Methane to acetic acid over cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction. J Am Chem Soc 137:1825–1832. https://doi.org/10.1021/ja5106927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zhang XF, Yao J, Yang X (2017) Effects of crystal size and pore structure on catalytic performance of TS-1 in the isomerization of styrene oxide to phenyl acetaldehyde. Micropor Mesopor Mater 247:16–22. https://doi.org/10.1016/j.micromeso.2017.03.047

    Article  CAS  Google Scholar 

  42. Periana RA, Taube DJ, Gamble S, Taube H, SatohFujii T (1998) Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280:560–564. https://doi.org/10.1126/science.280.5363.560

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the NSFC of China (20567004), and technical support from the Analytical and Testing Centre of Yunnan University.

Author information

Authors and Affiliations

Authors

Contributions

RP and XD carried out the synthesis of catalysts and catalytic reactions and wrote the first draft. WX carried out measurements, common characterization and data collection. XZ and QW carried out special characterization and data collection. HW formulated the research plan, provided core guidance, and made the revision of the manuscript.

Corresponding author

Correspondence to Honglin Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xin, W., Zheng, X. et al. Mild Oxidation of Methane to Oxygenates with O2 and CO on Fluorine Modified TS-1 Supported Rh Single-Atom Catalyst in a Flow Reactor. Catal Lett 154, 259–269 (2024). https://doi.org/10.1007/s10562-023-04298-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04298-y

Keywords

Navigation