Skip to main content
Log in

H4PMo11VO40-Catalyzed β-Citronellal Condensation Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, vanadium replaced molybdenum atoms generating catalysts with general formulae H3+nPMo12-nVnO40 (n = 0,1, 2 and 3), which were used in the acetalization of alkyl alcohols with terpene aldehyde (β-citronellal and methyl alcohol were model substrates). The initial focus was evaluating how the vanadium load impact the catalytic activity of phosphomolybdic acids and trying to link this effect with their structural properties. A comparison of performance achieved by the catalysts revealed that among phosphomolybdic acids (i.e., with V1, V2, and V3 atoms/per anion), the vanadium monosubstituted phosphomolybdic acid was the most active and selective toward the formation of β-citronellyl acetal. The effects of main reaction variables such as time, temperature, catalyst load, type of alcohol, and vanadium load on conversion and selectivity of the reactions were investigated. Remarkably, while in methyl alcohol, only acetal was formed, in the presence of other alkyl alcohols terpene ethers (geranyl and β-citronellyl) were also obtained. Their highest activity of H4PMo11VO40 was attributed to the greatest Brønsted acidity strength, as demonstrated by the acidity measurements and infrared spectroscopy analysis. This catalyst has advantages over traditional liquid mineral acid catalysts and provides an alternative route to synthesize acetal and terpene ethers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Plößer J, Lucas M, Claus P (2014) J Catal 320:189–197. https://doi.org/10.1016/j.jcat.2014.10.007

    Article  CAS  Google Scholar 

  2. Bhatia SP, Ginty DMC, Letizia CS, Api AM (2008) Food Chem Toxicol 46:S209–S214. https://doi.org/10.1016/j.fct.2008.06.059

    Article  CAS  PubMed  Google Scholar 

  3. Tsolakis N, Bam W, Srai JS, Kumar M (2019) J Clean Prod 222:802–822. https://doi.org/10.1016/j.jclepro.2019.02.108

    Article  CAS  Google Scholar 

  4. Gallezot P (2012) Chem Soc Rev 41:1538–1558. https://doi.org/10.1039/C1CS15147A

    Article  CAS  PubMed  Google Scholar 

  5. Lenardão EJ, Botteselle GV, de Azambuja F, Perin G, Jacob RG (2007) Tetrahedron 63:6671–6712. https://doi.org/10.1016/j.tet.2007.03.159

    Article  CAS  Google Scholar 

  6. Wu L, Moteki T, Gokhale AA, Flaherty DW, Toste FD (2016) Chem 1:32–58. https://doi.org/10.1016/j.chempr.2016.05.002

    Article  CAS  Google Scholar 

  7. Sanchez LM, Thomas HJ, Climent MJ, Romanelli GP, Iborra S (2016) Catal Rev 58(2016):497–586. https://doi.org/10.1080/01614940.2016.1248721

    Article  CAS  Google Scholar 

  8. da Silva MJ, Liberto NA, Leles LCA, Pereira UA (2016) J Mol Catal A 422:69–83

    Article  Google Scholar 

  9. Roelofs JCAA, van Dillen AJ, de Jong KP (2001) Catal Lett 74:91–94. https://doi.org/10.1023/A:1016626521403

    Article  CAS  Google Scholar 

  10. Chaves DM, Ferreira SO, da Silva RC, Natalino R, da Silva MJ (2019) Energ Fuel 33:7705–7716. https://doi.org/10.1021/acs.energyfuels.9b01583

    Article  CAS  Google Scholar 

  11. da Silva MJ, Chaves DM, Ferreira SO, da Silva RC, Gabriel Filho JB, Bruziquesi CGO, Al-Rabiah AA (2022) Chem Eng Sci 247:116913. https://doi.org/10.1016/j.ces.2021.116913

    Article  CAS  Google Scholar 

  12. Dong J-L, Yu L-S, Yu H, Xie J-W (2018) ACS Omega 3:4974–4985. https://doi.org/10.1021/acsomega.8b00159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hamada N, Kazahaya K, Shimizu H, Sato T (2004). Synlett. https://doi.org/10.1055/s-2004-820038

    Article  Google Scholar 

  14. Corma A, García H (2003) Chem Rev 103:4307–4366. https://doi.org/10.1021/cr030680z

    Article  CAS  PubMed  Google Scholar 

  15. Wegenhart BL, Liu S, Thom M, Stanley D, Abu-Omar MM (2012) ACS Catal 2:2524–2530. https://doi.org/10.1021/cs300562e

    Article  CAS  Google Scholar 

  16. Umbarkar SB, Kotbagi TV, Biradar AV, Pasricha R, Chanale J, Dongare MK, Mamede A-S, Lancelot C, Payen E (2009) J Mol Catal A 310:150–158. https://doi.org/10.1016/j.molcata.2009.06.010

    Article  CAS  Google Scholar 

  17. Hartati PBD, Firda HB, Bakar MB (2021) Flavour Fragr J 36:509–525. https://doi.org/10.1002/ffj.3671

    Article  CAS  Google Scholar 

  18. Serafim H, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2011) Chem Eng J 178:291–296. https://doi.org/10.1016/j.cej.2011.10.004

    Article  CAS  Google Scholar 

  19. Anaç O, Talinli N (2010) Bull Des Soc Chim Belg 102:79–87. https://doi.org/10.1002/bscb.19931020203

    Article  Google Scholar 

  20. Rubio-Caballero JM, Saravanamurugan S, Maireles-Torres P, Riisager A (2014) Catal Today 234:233–236. https://doi.org/10.1016/j.cattod.2014.03.004

    Article  CAS  Google Scholar 

  21. Kopa ID, Barakov RY, Sotnik SO, Shcherban ND (2022) Mater Today Proc 62:7686–7690. https://doi.org/10.1016/j.matpr.2022.03.146

    Article  CAS  Google Scholar 

  22. da Silva MJ, Teixeira MG, Natalino R (2019) New J Chem 43:8606–8612. https://doi.org/10.1039/C9NJ01284B

    Article  Google Scholar 

  23. Teixeira MG, Natalino R, da Silva MJ (2020) Catal Today 344:143–149. https://doi.org/10.1016/j.cattod.2018.11.071

    Article  CAS  Google Scholar 

  24. Silva MJ, Andrade da Silva PH, Ferreira SO, Silva RC, Brusiquezi CGO (2022). ChemiSelect. https://doi.org/10.1002/slct.202104174

    Article  Google Scholar 

  25. Wang S-S, Yang G-Y (2015) Chem Rev 115:4893–4962. https://doi.org/10.1021/cr500390v

    Article  CAS  PubMed  Google Scholar 

  26. López X, Carbó JJ, Bo C, Poblet JM (2012) Chem Soc Rev 41:7537. https://doi.org/10.1039/c2cs35168d

    Article  CAS  PubMed  Google Scholar 

  27. Vilanculo CB, da Silva MJ (2021) RSC Adv 11:34979–34987. https://doi.org/10.1039/D1RA06718D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coronel NC, da Silva MJ (2018) J Clust Sci 29:195–205. https://doi.org/10.1007/s10876-018-1343-0

    Article  CAS  Google Scholar 

  29. da Silva MJ, Liberto NA (2016) Curr Org Chem 20:1263–1283. https://doi.org/10.2174/1385272819666150907193100

    Article  CAS  Google Scholar 

  30. da Silva MJ, Lopes NPG, Ferreira SO, da Silva RC, Natalino R, Chaves DM, Texeira MG (2021) Chem Papers 75:153–168. https://doi.org/10.1007/s11696-020-01288-x

    Article  CAS  Google Scholar 

  31. Batalha DC, Ferreira SO, da Silva RC, da Silva MJ (2020) ChemSelect 5:1976–1986

    CAS  Google Scholar 

  32. Vilanculo CB, da Silva MJ (2020) New J Chem 2020:2813–2820

    Article  Google Scholar 

  33. da Silva MJ, da Silva Andrade PH, Sampaio VFC (2021) Catal Lett 151:2094–2106. https://doi.org/10.1007/s10562-020-03449-9

    Article  CAS  Google Scholar 

  34. da Silva MJ, de Oliveira CM (2018) Curr Catal 7:26–34. https://doi.org/10.2174/2211544707666171219161414

    Article  CAS  Google Scholar 

  35. Mizuno N, Kamata K (2011) Coord Chem Rev 255:2358–2370. https://doi.org/10.1016/j.ccr.2011.01.041

    Article  CAS  Google Scholar 

  36. Shatalov AA (2019) Carbohydr Polym 206:80–85. https://doi.org/10.1016/j.carbpol.2018.10.106

    Article  CAS  PubMed  Google Scholar 

  37. Villabrille P, Romanelli G, Vázquez P, Cáceres C (2004) Appl Catal A 270:101–111. https://doi.org/10.1016/j.apcata.2004.04.028

    Article  CAS  Google Scholar 

  38. Barteau KP, Lyons JE, Song IK, Barteau MA (2006) Top Catal 41:55–62. https://doi.org/10.1007/s11244-006-0094-6

    Article  CAS  Google Scholar 

  39. Lee JK, Melsheimer J, Berndt JS, Mestl G, Schlögl R, Köhler K (2001) Appl Catal A 214:125–148. https://doi.org/10.1016/S0926-860X(01)00485-9

    Article  CAS  Google Scholar 

  40. Vilanculo CB, da Silva MJ, Rodrigues AA, Ferreira SO, da Silva RC (2021) RSC Adv 11:24072–24085. https://doi.org/10.1039/D1RA04191F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. da Silva MJ, Ribeiro CJA, Vilanculo CB (2022). Catal Lett. https://doi.org/10.1007/s10562-022-04132-x

    Article  Google Scholar 

  42. Vilanculo CB, da Silva MJ (2021) Mol Catal 512:111780. https://doi.org/10.1016/j.mcat.2021.111780

    Article  CAS  Google Scholar 

  43. Jing F, Katryniok B, Dumeignil F, Bordes-Richard E, Paul S (2014) J Catal 309(2014):121–135. https://doi.org/10.1016/j.jcat.2013.09.014

    Article  CAS  Google Scholar 

  44. Tsigdinos GA, Hallada CJ (1968) Inorg Chem 7:437–441. https://doi.org/10.1021/ic50061a009

    Article  CAS  Google Scholar 

  45. Chen CY, Li HX, Davis ME (1993) Microporous Mat 2:17–26

    Article  Google Scholar 

  46. Pizzio LR, Blanco MN (2007) Microporous Mesoporous Mat 103:40–47. https://doi.org/10.1016/j.micromeso.2007.01.036

    Article  CAS  Google Scholar 

  47. Serwicka EM, Bruckman K, Haber J, Paukshtis EA, Yurchenko EN (1991) Appl Catal 73:153–163. https://doi.org/10.1016/0166-9834(91)85133-G

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from CNPq and FAPEMIG (Brasil). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio José da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.J., Ribeiro, C.J.A. & Rodrigues, A.A. H4PMo11VO40-Catalyzed β-Citronellal Condensation Reactions. Catal Lett 153, 3829–3836 (2023). https://doi.org/10.1007/s10562-023-04274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04274-6

Keywords

Navigation