Skip to main content
Log in

How the Content of Protons and Vanadium Affects the Activity of H3+nPMo12-nVnO40 (n = 0, 1, 2, or 3) Catalysts on the Oxidative Esterification of Benzaldehyde with Hydrogen Peroxide

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, the activity of various Brønsted acid catalysts (i.e., Vanadium-doped phosphomolybdic acids, sulfuric and phosphoric acids) was assessed in one-pot reactions of oxidative esterification of benzaldehyde with hydrogen peroxide and alkyl alcohols. A series of Keggin heteropolyacids with general formulae H3+nPMo12-nVnO40 (n = 0, 1, 2, or 3) was synthesized aiming to evaluate the impacts of protons and Vanadium loading in the conversion and selectivity of benzaldehyde oxidation. Among the catalysts assessed, the H5PMo10V2O40 was the most active and selective. The highest activity was assigned to the suitable proportion between Lewis (V+5+) and Brønsted (H+) active sites present in the disubstituted catalyst. A Vanadium doping at an adequate level increases its potential redox and accelerate the redox step where the catalyst participates. The effects of main reaction parameters, such as alcohol, concentration and type of catalyst, temperature and oxidant load were investigated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1.
Scheme 2.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3.
Fig. 8

Similar content being viewed by others

References

  1. Chumbhale VR, Paradhy SA, Anilkumar M, Kadam ST, Bokade VV (2005) Vapour phase oxidation of acetophenone to benzoic acid over binary oxides of V and Mo. Chem Eng Res Des 83:75–80

    Article  CAS  Google Scholar 

  2. da Silva MJ, Julio AA, Ayala DAM, de Miranda LMP (2018) Fe(SO4)3-Catalyzed synthesis of terpenic alcohols esters: a simple and bifunctional reusable solid catalyst. ChemSelect 3:1–8

    Google Scholar 

  3. Yu C, Ozkaya B, Patureau FW (2021) Electro-oxidative selective esterification of methylarenes and benzaldehydes. Chem Eur J 27:3682–3687

    Article  CAS  PubMed  Google Scholar 

  4. Li YL, Pang JY, Lou JC, Sun WW, Liu JK, Wu B (2021) Chemo-and site-selective Fischer esterification catalyzed by B(C6F5)3, Asian. J Org Chem 10:1424–1427

    CAS  Google Scholar 

  5. da Silva MJ, Leles LCA, Natalino R, Ferreira SO, Coronel NC (2018) An efficient benzaldehyde oxidation by hydrogen peroxide over metal substituted lacunary potassium heteropolyacid salts. Catal Lett 148:1202–1214

    Article  Google Scholar 

  6. Singh S, Patel A, Prakashan P (2015) One-pot oxidative esterification of aldehyde over recyclable cesium salt of nickel substituted phosphotungstate. Appl Catal A 505:131–140

    Article  CAS  Google Scholar 

  7. Patel A, Pathan S, Prakashan P (2016) One-pot oxidative esterification of benzaldehyde over a supported Cs-salt of mono Nickel substituted phosphotungstate. RSC Adv 6:51394–51402

    Article  CAS  Google Scholar 

  8. Kashyap R, Talukdar DJ, Pratihar S (2015) Iron oxalate capped iron-copper nanomaterial for the oxidative transformation of aldehydes. New J Chem 39:1430–1437

    Article  CAS  Google Scholar 

  9. Biajoli AFP, Peringer F, Monteiro AL (2017) Pd(OAc)2/dppp, an efficient catalytic system for the oxidative esterification of benzaldehyde using organic halides as oxidants. Catal Commun 89:48–51

    Article  CAS  Google Scholar 

  10. Wu X-F (2012) Zinc-catalyzed oxidative esterification of aromatic aldehydes. Tetrahedron Lett 53:3397–3399

    Article  CAS  Google Scholar 

  11. Yoo W-J, Li C-J (2007) Copper-catalyzed oxidative esterification of alcohols with aldehydes activated by Lewis acids. Tetrahedron Lett 48:1033–1035

    Article  CAS  Google Scholar 

  12. Lapa HM, da Silva MFCG, Pombeiro AJL, Alegria ECBA, Martins LMDRS (2020) C-scorpionate Au(III) complexes as pre-catalysts for industrially significant toluene oxidation and benzaldehyde esterification reactions. Inorg Chim Acta 512:119881–119892

    Article  CAS  Google Scholar 

  13. Feng J-B, Gong J-L, Li Q, Wu X-F (2014) Calcium and Magnesium chlorides-catalyzed oxidative esterification of aromatic aldehydes. Tetrahedron Lett 55:1657–1659

    Article  CAS  Google Scholar 

  14. Li Y, Wang L, Yan R, Han J, Zhang S (2015) Gold nanoparticles supported on Ce-Zr oxides for the oxidative esterification of aldehydes to esters. Catal Sci Technol 5:3682–3692

    Article  CAS  Google Scholar 

  15. Gawande MB, Rathi AK, Tucek J, Safarova K, Bundaleski N, Teodoro OMND, Kvitek L, Varma RS, Zboril R (2014) Magnetic Gold (nanocat-Fe-Au) nanocatalyst: catalytic applications for the oxidative esterification and Hydrogen transfer reactions. Green Chem 16:4137–4143

    Article  CAS  Google Scholar 

  16. Suzuki K, Yamaguchi T, Matsushita K, Iitsuka C, Miura J, Akaogi T, Ishida H (2013) Aerobic oxidative esterification of aldehydes with alcohols by Gold-Nickel oxide nanoparticle catalysts with a core-shell structure. ACS Catal 3:1845–1849

    Article  CAS  Google Scholar 

  17. Sharma RK, Gulati S (2012) Manganese phthalocyanine immobilized on silica gel: efficient and recyclable catalyst for single-step oxidative esterification of aldehydes with alcohols. J Mol Catal A 363–364:291–303

    Article  Google Scholar 

  18. da Silva MJ, Liberato NA (2016) Soluble and solid supported Keggin heteropolyacids as catalysts in reactions for biodiesel production: challenges and recent advances. Curr Org Chem 20(12):1263–1283

    Article  Google Scholar 

  19. Coronel NC, da Silva MJ (2018) Lacunar Keggin heteropolyacid salts: soluble, solid and solid-supported catalysts. J Clust Sci 29:195–205

    Article  CAS  Google Scholar 

  20. Kozhevnikov IV (2007) Sustainable heterogeneous acid catalysis by heteropoly acids. J Mol Catal A: Chemical 262:86–92

    Article  CAS  Google Scholar 

  21. Yadav GD (2005) Synergism of clay and heteropoly acids as nano-catalysts for the development of green processes with potential industrial applications. Catal. Sur. Asia 9:117–137

    Article  CAS  Google Scholar 

  22. Kuznetsova LI, Detusheva LG, Kuznetsova NI, Fedotov MA, Likholobov VA (1997) Relation between structure and catalytic properties of transition metal complexes with heteropolyanion PW11O397- in oxidative reactions. J Mol Catal A 117:389–396

    Article  CAS  Google Scholar 

  23. Song Y, Wang X, Qu Y, Huang C, Li Y (2016) Efficient dehydration of fructose to 5-Hydroxymethylfurfural catalyzed by heteropolyacid salts. Catalysts 6:49

    Article  Google Scholar 

  24. Popa A, Sasca V, Verdes O, Oszko A (2018) Preparation and catalytic properties of Cobalt salts of Keggin type heteropolyacids supported on mesoporous sílica. Catal Today 306:233–242

    Article  CAS  Google Scholar 

  25. Yu Y, Sun D, Wang S, Xiao M, Sun L, Meng Y (2019) Heteropolyacid salt catalysts for methanol conversion to hydrocarbons and dimethyl ether: effect of reaction temperature. Catalysts 9:320–333

    Article  Google Scholar 

  26. da Silva MJ, Lopes NPG, Ferreira SO, da Silva RC, Natalino R, Chaves DM, Texeira MG (2021) Monoterpenes etherification reactions with alkyl alcohols over Cesium partially exchanged Keggin heteropoly salts: effects of the catalyst composition. Chem Papers 75:153–168

    Article  Google Scholar 

  27. Patel A, Patel J (2020) Nickel salt of phosphomolybdic acid as a bifunctional homogeneous recyclable catalyst for the base free transformation of an aldehyde into ester. RSC Adv 10:22146–22155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou L, Wang L, Cao Y, Diao Y, Yan R, Zhang S (2017) The states and effects of Copper in Keggin-type heteropolyoxometalate catalysts on oxidation of methacrolein to methacrylic acid. Mol Catal 438:47–54

    Article  CAS  Google Scholar 

  29. Zhou L, Wang L, Zhang S, Yan R, Diao Y (2015) Effect of vanadyl species in Keggin-type heteropoly catalysts in selective oxidation of methacrolein to methacrylic acid. J Catal 329:431–440

    Article  CAS  Google Scholar 

  30. Mizuno N, Kamata K (2011) Catalytic oxidation of hydrocarbons with hydrogen peroxide by Vanadium-based polyoxometalates. Coord Chem Ver 255:2358–2370

    Article  CAS  Google Scholar 

  31. Shatalov AA (2019) Highly efficient hydrolysis of plant hemicelluloses by mixed-addenda Keggin-type (Mo-V-P)-heteropolyacids in diluted aqueous solution. Carbohydr Polym 206:80–85

    Article  CAS  PubMed  Google Scholar 

  32. Vilanculo CB, da Silva MJ, Rodrigues AA, Ferreira SO, da Silva RC (2021) Vanadium-doped sodium phosphomolybdate salts as catalysts in the terpene alcohols oxidation with hydrogen peroxide. RSC Adv 11:24072–24085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vilanculo CB, da Silva MJ (2021) Na4PMo11VO40-catalyzed one-pot oxidative esterification of benzaldehyde with hydrogen peroxide. RSC Adv 11:34979–34987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vilanculo CB, da Silva MJ (2021) Can Brønsted acids catalyze the epoxidation of allylic alcohols with H2O2? With a little help from the proton, the H3PMo12O40 acid did it and well. Mol Catal 512:111780–111789

    Article  CAS  Google Scholar 

  35. Jing F, Katryniok B, Dumeignil F, Bordes-Richard E (2014) Catalytic selective oxidation of isobutane to methacrylic acid on supported (NH4)3HPMo11VO40 catalysts. J Catal 309:121–135

    Article  CAS  Google Scholar 

  36. George B, Tsigdinos A, Hallada CJ (1968) Molybdovanadophosphoric acids and their Salts. I. Investigation of methods of preparation and characterization. Inorg Chem 7:437–441

    Article  Google Scholar 

  37. Rao KTV, Rao PSN, Nagaraju P, Prasad PSS, Lingaiah N (2009) Room temperature selective oxidation of toluene over vanadium substituted polyoxometalate catalysts. J Mol Catal A 303:84–89

    Article  CAS  Google Scholar 

  38. Pizzio LR, Blanco MN (2007) A contribution to the physicochemical characterization of nonstoichiometric salts of tungstosilicic acid. Micropor Mesopor Mat 103:40–47

    Article  CAS  Google Scholar 

  39. Casarini D, Centi G, Jírů P, Lena V, Tvarůzková Z (1993) Reactivity of molybdovanadophosphoric acids: influence of the presence of vanadium in the primary and secondary structure. J Catal 143:325–344

    Article  CAS  Google Scholar 

  40. Rocchiccioli-Deltcheff C, Fournier M (1991) Catalysis by polyoxometalates. Part 3 - influence of vanadium(V) on the thermal stability of 12-metallophosphoric acids from in situ infrared studies. J Chem Soc Faraday Trans 87:3913–3920

    Article  CAS  Google Scholar 

  41. Fournier M, Feumi-Jantou C, Rabia C, Hervé F, Launay S (1991) Polyoxometalates catalyst materials: x-ray thermal stability study of phosphorus-containing heteropolyacids, H3+xPM12-xVxO40·13-14H 2O (M = Mo, W; x = 0–1). J Mater Chem 2:971–978

    Article  Google Scholar 

  42. Nomiya K, Yagishita K, Nemoto Y, Kamataki T (1997) Functional action of Keggin-type mono-vanadium(V)-substituted heteropolymolybdate as a single species on catalytic hydroxylation of benzene in the presence of hydrogen peroxide. J Mol Catal A 126:43–53

    Article  CAS  Google Scholar 

  43. Sultan M, Paul S, Fournier M, Vanhove D (2004) Evaluation and design of heteropolycompound catalysts for the selective oxidation of isobutane into methacrylic acid. Appl Catal A 259:141–152

    Article  CAS  Google Scholar 

  44. Shen Z, Long F, Ma T, Li H, Li A, Feng Q, Liu J, Sun Y (2020) Keggin-type heteropolyacids-catalyzed selective hydrothermal oxidation of microalgae for low nitrogen biofuel production. Chemsuschem 13:1–13

    Article  Google Scholar 

  45. Barteau KP, Lyons JE, Song IK, Barteau MA (2006) UV-visible spectroscopy as a probe of heteropolyacid redox properties: application to liquid phase oxidations. Topics Catal 41:55–62

    Article  CAS  Google Scholar 

  46. Maestre JM, Lopes X, Bo C, Poblet J-M, Casañ-Pastor N (2001) Electronic and magnetic properties of R-Keggin anions: a DFT study of [XM12O40]n-, (M = W, Mo; X = AlIII, SiIV, PV, FeIII, CoII, CoIII ) and [SiM11VO40]m- (M = Mo and W). J Am Chem Soc 123:3749–3758

    Article  CAS  PubMed  Google Scholar 

  47. Villabrille P, Romanelli G, Vázquez P, Cáceres C (2004) Vanadium-substituted Keggin heteropolycompounds as catalysts for eco-friendly liquid phase oxidation of 2,6-dimethylphenol to 2,6-dimethyl-1,4-benzoquinone. Appl Catal A 270:101–111

    Article  CAS  Google Scholar 

  48. Weinstock IA, Schreiber RE, Neumann R (2018) Dioxygen in polyoxometalate mediated reactions. Chem Rev 118:2680–2717

    Article  CAS  PubMed  Google Scholar 

  49. Rao PSN, Parameswaram G, Rao AVP, Lingaiah N (2015) Influence of cesium and vanadium contents on the oxidation functionalities of heteropoly molybdate catalysts. J Mol Catal A 399:62–70

    Article  CAS  Google Scholar 

  50. Palermo V, Sathieq AG, Constantieux T, Rodríguez J, Vázquez PG, Romanelli GP (2016) First report about the use of micellar Keggin heteropolyacids as catalysts in the green multicomponent synthesis of nifedipine derivatives. Catal Lett 146:1634–1647

    Article  CAS  Google Scholar 

  51. Palermo V, Sathieq A, Constantieux T, Rodríguez J, Vázquez P, Romanelli G (2015) New vanadium Keggin heteropolyacids encapsulated in a silica framework: recyclable catalysts for the synthesis of highly substituted hexahydropyrimidines under suitable conditions. Catal Lett 145:1022–1032

    Article  CAS  Google Scholar 

  52. Pillai UR, Sahle-Demessie E (2004) Selective oxidation of alcohols over vanadium phosphorus oxide catalyst using hydrogen peroxide. Appl Catal A 276:139–144

    Article  CAS  Google Scholar 

  53. da Silva MJ, de Oliveira CM (2021) Metal nitrate-catalyzed one-pot oxidative esterification of benzaldehyde with hydrogen peroxide in alcoholic solutions at room temperature. New J Chem 45:3683–3691

    Article  Google Scholar 

  54. da Silva MJ, Rodrigues AA (2020) Metal silicotungstate salts as catalysts in furfural oxidation reactions with hydrogen peroxide. Mol Catal 493:111104–111114

    Article  Google Scholar 

  55. da Silva MJ, da Silva GRN, Sampaio VFC, Vilanculo CB, Fernandes SA, Teixeira MG (2021) One-pot synthesis of benzaldehyde derivatives in PdCl2-catalyzed reactions with H2O2 in alcoholic solutions. Chem Papers 75:1545–1554

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from CNPq and FAPEMIG (Brasil). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Funding

Funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Grant No. 001)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio José da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 414 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.J., Ribeiro, C.J.A. & Vilanculo, C.B. How the Content of Protons and Vanadium Affects the Activity of H3+nPMo12-nVnO40 (n = 0, 1, 2, or 3) Catalysts on the Oxidative Esterification of Benzaldehyde with Hydrogen Peroxide. Catal Lett 153, 2045–2056 (2023). https://doi.org/10.1007/s10562-022-04132-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04132-x

Keywords

Navigation