Skip to main content
Log in

Sodium Dodecyl Sulphate Catalyzed One-Pot Three-Component Synthesis of Structurally Diverse 2-Amino-3-cyano Substituted Tetrahydrobenzo[b]pyrans and Spiropyrans in Water at Room Temperature

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A facile and convenient method has been developed for the one-pot three-component synthesis of 2-amino-3-cyano substituted tetrahydrobenzo[b]pyran derivatives from the reactions of aromatic aldehydes, malononitrile and dimedone or 1,3-cyclohexanedione in the presence of a catalytic amount of sodium dodecyl sulphate as an efficient surfactant type catalyst in water at room temperature. Synthesis of 2-amino-3-cyano substituted spiropyrans was also achieved under the same reaction conditions starting from ninhydrin/isatins, malononitrile and dimedone or 1,3-cyclohexanedione. All the reactions were completed within 2.5 h and the desired products afforded in good to excellent yields. Gram scale production of the desired compound was also achieved. Use of water as green solvent, commercially available low cost surfactant type catalyst, high atom economy, excellent yields, energy efficiency, no column chromatographic purifications, reusability of the solvent media, multiple carbon–carbon and carbon-heteroatom bond formations are some of the major advantages of this newly developed protocol.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaur M, Kaur M, Bandopadhyay T, Sharma A, Priya A, Singh A, Banerjee B (2022) Phy Sci Rev. https://doi.org/10.1515/psr-2022-0003

    Article  Google Scholar 

  2. Ma J, Hecht SM (2004) Chem Comm 10:1190–1191

    Article  Google Scholar 

  3. Ray S, Majumder HK, Chakravarty AK, Mukhopadhyay S, Gil RR, Cordell GA (1996) J Nat Prod 59:27–29

    Article  CAS  PubMed  Google Scholar 

  4. Makino M, Fujimoto Y (1999) Phytochemistry 50:273–277

    Article  CAS  Google Scholar 

  5. Delost MD, Smith DT, Anderson BJ, Njardarson JT (2018) J Med Chem 61:10996–11020

    Article  CAS  PubMed  Google Scholar 

  6. Kemnitzer W, Kasibhatla S, Jiang S, Zhang H, Zhao J, Jia S, Xu L, Crogan-Grundy C, Denis R, Barriault N, Vaillancourt L, Charron S, Dodd J, Attardo G, Labrecque D, Lamothe S, Gourdeau H, Tseng B, Drewe J, Cai SX (2005) Bioorg Med Chem Lett 15:4745–4751

    Article  CAS  PubMed  Google Scholar 

  7. Mahmoodi M, Aliabadi A, Emami S, Safavi M, Rajabalian S, Mohagheghi MA, Khoshzaban A, Samzadeh-Kermani A, Lamei N, Shafiee A, Foroumadi A (2010) Arch Pharm Chem Life Sci 343:411–416

    Article  CAS  Google Scholar 

  8. Kemnitzer W, Drewe J, Jiang S, Zhang H, Zhao J, Crogan-Grundy C, Xu L, Lamothe S, Gourdeau H, Denis R, Tseng B, Kasibhatla S, Cai SX (2007) J Med Chem 50:2858

    Article  CAS  PubMed  Google Scholar 

  9. Fouda AM (2016) Med Chem Res 25:1229–1238

    Article  CAS  Google Scholar 

  10. Amr AGE, Mohamed AM, Mohamed SF, Abdel-Hafez NA, Hammam AEFG (2006) Bioorg Med Chem 14:5481–5488

    Article  CAS  PubMed  Google Scholar 

  11. Smith CW, Bailey JM, Billingham MEJ, Chandrasekhar S, Dell CP, Harvey AK, Hicks CA, Kingston AE, Wishart GN (1995) Bioorg Med Chem Lett 5:2783–2788

    Article  CAS  Google Scholar 

  12. Kumar D, Reddy VB, Sharad S, Dube U, Kapur S (2009) Eur J Med Chem 44:3805–3809

    Article  CAS  PubMed  Google Scholar 

  13. Abdelrazek FM, Metz P, Farrag EK (2004) Arch Pharm Pharm Med Chem 337:482–485

    Article  CAS  Google Scholar 

  14. Paliwal PK, Jetti SR, Jain S (2013) Med Chem Res 22:2984–2990

    Article  CAS  Google Scholar 

  15. Vala ND, Jardosh HH, Patel MP (2016) Chin Chem Lett 27:168

    Article  CAS  Google Scholar 

  16. Kidwai M, Jain A, Nemaysh V, Kumar R (2013) Med Chem Res 22:2717–2723

    Article  CAS  Google Scholar 

  17. Brahmachari G, Banerjee B (2013) ACS Sustain Chem Eng 2:411–422

    Article  Google Scholar 

  18. Hasaninejad A, Shekouhy M, Golzar N, Zare A, Doroodmand MM (2011) Appl Catal A Gen 402:11–22

    Article  CAS  Google Scholar 

  19. Banerjee S, Horn A, Khatri H, Sereda G (2011) Tetrahedron Lett 52:1878–1881

    Article  CAS  Google Scholar 

  20. Wang LM, Shao JH, Tian H, Wang YH, Liu B (2006) J Fluor Chem 127:97–100

    Article  CAS  Google Scholar 

  21. Ghobadpoor A, Eskandari MM, Zare A, Karami M (2021) Iran J Catal 11:69–75

    CAS  Google Scholar 

  22. Magar CV, Solanke KS, Mane SB, Choudhary SS, Pawar RP (2007) Synth Commun 37:4353–4357

    Article  Google Scholar 

  23. Mohammadi AA, Asghariganjeh MR, Hadadzahmatkesh A (2017) Arab J Chem 10:S2213–S2216

    Article  CAS  Google Scholar 

  24. Pourpanah SS, Habibi-Khorassani SM, Shahraki M (2015) Chinese J Catal 36:757–763

    Article  CAS  Google Scholar 

  25. Mahdieh H, Farhad S, Mostafa G (2019) J Nanosci Nanotechnol 19:3447–3458

    Article  Google Scholar 

  26. Oskooie HA, Heravi MM, Karimi N, Zadeh ME (2011) Synth Commun 41:436–440

    Article  CAS  Google Scholar 

  27. Sabitha G, Arundhathi K, Sudhakar K, Sastry BS, Yadav JS (2009) Synth Comm 39:433–442

    Article  CAS  Google Scholar 

  28. Ataie F, Davoodnia A, Khojastehnezhad A (2019) Polycyclic Aromat Compd 414:781–794

    Google Scholar 

  29. Biglari M, Shirini F, Mahmoodi NO, Zabihzadeh M, Mashhadinezhad MA (2020) J Mol Struct 1205:127652. https://doi.org/10.1016/j.molstruc.2019.127652

    Article  CAS  Google Scholar 

  30. Ranu BC, Banerjee S, Roy S (2008) Indian J Chem 47:1108–1112

    Google Scholar 

  31. Devi I, Bhuyan PJ (2004) Tetrahedron Lett 45:8625–8627

    Article  CAS  Google Scholar 

  32. Azarifar D, Khatami SM, Zolfigol MA, Nejat-Yami R (2013) J Iran Chem Soc 11:1223–1230

    Article  Google Scholar 

  33. Mobinikhaledi A, Fard MAB (2010) Acta Chim Slov 57:931–935

    CAS  PubMed  Google Scholar 

  34. Balalaie S, Sheikh-Ahmadi M, Bararjanian M (2007) Catal Commun 8:1724–1728

    Article  CAS  Google Scholar 

  35. Shi D, Mou J, Zhuang Q, Wang X (2004) J Chem Res 12:821–823

    Article  Google Scholar 

  36. Hu H, Qiu F, Ying A, Yang J, Meng H (2014) J Mol Sci 15:6897–6909

    Article  CAS  Google Scholar 

  37. Jin TS, Wang AQ, Wang X, Zhang JS, Li TS (2004) Synlett 5:0871–0873

    Article  Google Scholar 

  38. Gao S, Tsai CH, Tseng C, Yao CF (2008) Tetrahedron 64:9143–9149

    Article  CAS  Google Scholar 

  39. Patra A, Mahapatra T (2010) J Chem Res 34:689–693

    Article  CAS  Google Scholar 

  40. Balalaie S, Bararjanian M, Sheikh-Ahmadi M, Hekmat S, Salehi P (2007) Synth Commun 37:1097–1108

    Article  CAS  Google Scholar 

  41. Banerjee B (2018) Curr Org Chem 22:208–233

    Article  CAS  Google Scholar 

  42. Kaur G, Sharma A, Banerjee B (2018) J Serb Chem Soc 83:1071–1097

    Article  CAS  Google Scholar 

  43. Banerjee B, Bhardwaj V, Kaur A, Kaur G, Singh A (2020) Curr Org Chem 23:3191–3205

    Article  Google Scholar 

  44. Basafa S, Davoodnia A, Beyramabadi SA, Pordel M (2021) Chem Methodol 5:59–69

    CAS  Google Scholar 

  45. Selmi A, Zarei A, Tachoua W, Puschmann H, Teymourinia H, Ramazani A (2022) Chem Methodol 6:463–474

    CAS  Google Scholar 

  46. Banik BK, Banerjee B (2022) In Organocatalysis: A Green Tool for Sustainable Developments. De Gruyter, Berlin, Boston. https://doi.org/10.1515/9783110732542

    Book  Google Scholar 

  47. Banerjee B, Kaur G, Priya A (2022) Green sustainable process for chemical and environmental engineering and science. Elsevier, Amsterdam, pp 337–350

    Book  Google Scholar 

  48. Manabe K, Mori Y, Wakabayashi T, Nagayama S, Kobayashi S (2000) J Am Chem Soc 122:7202–7207

    Article  CAS  Google Scholar 

  49. Kaur G, Thakur S, Kaundal P, Chandel K, Banerjee B (2018) ChemistrySelect 3:12918–12936

    Article  CAS  Google Scholar 

  50. Manabe K, Iimura S, Sun XM, Kobayashi S (2002) J Am Chem Soc 124:11971–11978

    Article  CAS  PubMed  Google Scholar 

  51. Lang S (2002) Curr Opin in Colloid Interface Sci 7:12–20

    Article  CAS  Google Scholar 

  52. Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biotechnol Adv 28:436–450

    Article  CAS  PubMed  Google Scholar 

  53. Kumar A, Rao MS, Rao VK (2010) Aust J Chem 63:1538–1540

    Article  CAS  Google Scholar 

  54. Ghosh P, Mandal A (2011) Catal Commun 12:744–747

    Article  CAS  Google Scholar 

  55. Bansal R, Soni PK, Sharma J, Bhardwaj SK, Halve AK (2017) Curr Chem Lett 6:135–142

    Article  Google Scholar 

  56. Ghosh P, Mandal A (2013) Green Chem Lett Rev 6:45–54

    Article  CAS  Google Scholar 

  57. Mehrabi H, Abusaidi H (2010) J Iran Chem Soc 7:890–894

    Article  CAS  Google Scholar 

  58. Hemmati S, Safarimehr P, Safaei M, Hekmati M (2016) J Heterocycl Chem 54:1640–1644

    Article  Google Scholar 

  59. Veisi H, Azadbakht R, Ezadifar M, Hemmati S (2013) J Heterocycl Chem 50:E241–E246

    CAS  Google Scholar 

  60. Sahu PK, Sahu PK, Agarwal DD (2014) RSC Adv 4:40414–40420

    Article  CAS  Google Scholar 

  61. Sahu PK (2016) RSC Adv 6:67651–67661

    Article  CAS  Google Scholar 

  62. Shi DQ, Shi JW, Yao H (2009) Synth Commun 39:664–675

    Article  CAS  Google Scholar 

  63. Kong D, Wang Q, Zhu Z, Wang X, Shi Z, Lin Q, Wu M (2017) Tetrahedron Lett 58:2644–2647

    Article  CAS  Google Scholar 

  64. Wang W, Wang SX, Qin XY, Li JT (2005) Synth Commun 35:1263–1269

    Article  CAS  Google Scholar 

  65. Bhutia ZT, Panjikar PC, Iyer S, Chatterjee A, Banerjee M (2020) ACS Omega 5:13333–13343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tornquist BL, Bueno GP, Willig JCM, Oliveira IM, Stefani HA, Rafique J, Saba S, Iglesias BA, Botteselle GV, Manarin F (2018) ChemistrySelect 3:6358–6363

    Article  CAS  Google Scholar 

  67. Guidotti BB, Silva TS, Correia JTM, Coelho F (2020) Org Biomol Chem 18:7330–7335

    Article  CAS  PubMed  Google Scholar 

  68. Costantino U, Fringuelli F, Orrù M, Nocchetti M, Piermatti O, Pizzo F (2009) Eur J Org Chem 2009:1214–1220

    Article  Google Scholar 

  69. McKay CS, Kennedy DC, Pezacki JP (2009) Tetrahedron Lett 50:1893–1896

    Article  CAS  Google Scholar 

  70. Kamali TA, Bakherad M, Nasrollahzadeh M, Farhangi S, Habibi D (2009) Tetrahedron Lett 50:5459–5462

    Article  CAS  Google Scholar 

  71. Background review for sodium laurilsulfate used as an excipient, European Medicines Agency, (2015) EMA/CHMP/351898/2014. Available at: https://www.ema.europa.eu/en/documents/report/background-review-sodium-laurilsulfate-used-excipient-context-revision-guideline-excipients-label_en.pdf

  72. Kaur G, Devi P, Thakur S, Kumar A, Chandel R, Banerjee B (2018) ChemistrySelect 3:9892–9910

    Article  CAS  Google Scholar 

  73. Brahmachari G, Banerjee B (2012) Asian J Org Chem 1:251–258

    Article  CAS  Google Scholar 

  74. Banerjee B, Brahmachari G (2014) J Chem Res 38:745–750

    Article  CAS  Google Scholar 

  75. Brahmachari G, Laskar S, Banerjee B (2014) J Heterocycl Chem 51:303–308

    Article  Google Scholar 

  76. Kaur G, Shamim M, Bhardwaj V, Gupta VK, Banerjee B (2020) Synth Commun 50:1545–1560

    Article  CAS  Google Scholar 

  77. Taherkhani H, Ramazani A, Sajjadifar S, Aghahossieini H, Rezaei A (2021) ACS Omega 6:25608–25622

    Article  Google Scholar 

  78. Rezayati S, Kalantari F, Ramazani A, Sajjadifar S, Aghahosseini H, Rezaei A (2022) Inorg Chem 61:992–1010

    Article  CAS  PubMed  Google Scholar 

  79. Baghernejad B, Harzevili MR (2021) Chem Methodol 5:90–95

    CAS  Google Scholar 

  80. Hassanzadeh-Afruzi F, Asgharnasl S, Mehraeen S, Amiri-Khamakani Z, Maleki A (2021) Sci Rep 11:19852. https://doi.org/10.1038/s41598-021-99120-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kamalzare M, Ahghari MR, Bayat M, Maleki A (2021) Sci Rep 11:20021. https://doi.org/10.1038/s41598-021-99121-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maleki A, Jafari AA, Yousefi S (2017) Carbohydr Polym 175:409–416

    Article  CAS  PubMed  Google Scholar 

  83. Maleki A, Azadegan S (2017) Inorg Nano-Met Chem 47:917–924

    Article  CAS  Google Scholar 

  84. Maleki A, Azadegan S (2017) J Inorg Organomet Polym 27:714–719

    Article  CAS  Google Scholar 

  85. Maleki A, Ghassemi M, Firouzi-Haji R (2018) Pure Appl Chem 90:387–394

    Article  CAS  Google Scholar 

  86. Maleki A, Movahed H, Ravaghi P (2017) Carbohydr Polym 156:259–267

    Article  CAS  PubMed  Google Scholar 

  87. Maleki A, Aghaei M, Ghamari N (2016) Appl Organometal Chem 30:939

    Article  CAS  Google Scholar 

  88. Hajizadeh Z, Maleki A (2018) Mol Catal 460:87–93

    Article  CAS  Google Scholar 

  89. Maleki A, Azizia M, Emdadi Z (2018) Green Chem Lett Rev 114:573–582

    Article  Google Scholar 

  90. Maleki A, Varzi Z, Hassanzadeh-Afruzi F (2019) Polyhedron 171:193–202

    Article  CAS  Google Scholar 

  91. Maleki A, Hajizadeh Z (2019) Silicon 11:2789–2798

    Article  CAS  Google Scholar 

  92. Kaur G, Bala K, Devi S, Banerjee B (2018) Curr Green Chem 5:150–167

    Article  CAS  Google Scholar 

  93. Brahmachari G, Banerjee B (2016) Curr Organocatal 3:93–124

    Article  CAS  Google Scholar 

  94. Singh A, Kaur G, Kaur A, Gupta VK, Banerjee B (2020) Curr Green Chem 7:128–140

    Article  CAS  Google Scholar 

  95. Kaur G, Singh A, Bala K, Devi M, Kumari A, Devi S, Devi R, Gupta VK, Banerjee B (2019) Curr Org Chem 23:1778–1788

    Article  CAS  Google Scholar 

  96. Banerjee B, Priya A, Sharma A, Kaur G, Kaur M (2022) Phy Sci Rev 7:539–565

    Google Scholar 

  97. Banik BK, Banerjee B, Kaur G, Saroch S, Kumar R (2020) Molecules 25:5918. https://doi.org/10.3390/molecules25245918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sharma A, Singh A, Priya A, Kaur M, Gupta VK, Jaitak V, Banerjee B (2022) Synth Commun 52:1614–1627

    Article  CAS  Google Scholar 

  99. Banerjee B, Singh A, Kaur G (2022) Phy Sci Rev 7:301–323

    Google Scholar 

  100. Kaur G, Moudgil R, Shamim M, Gupta VK, Banerjee B (2021) Synth Commun 51:1100–1120

    Article  CAS  Google Scholar 

  101. Kaur G, Kumar R, Saroch S, Gupta VK, Banerjee B (2021) Curr Organocatal 8:147–159

    Article  CAS  Google Scholar 

  102. Kaur G, Singh D, Singh A, Banerjee B (2021) Synth Commun 51:1045–1057

    Article  CAS  Google Scholar 

  103. Kaur M, Priya A, Sharma A, Singh A, Banerjee B (2022) Synth Commun 52:1635–1656

    Article  CAS  Google Scholar 

  104. Saluja P, Aggarwal K, Khurana JM (2013) Synth Commun 43:3239–3246

    Article  CAS  Google Scholar 

  105. Jin SS, Ding MH, Guo HY (2013) Heterocycl Commun 19:139–143

    Article  CAS  Google Scholar 

  106. Zhu SL, Ji SJ, Zhang Y (2007) Tetrahedron 63:9365–9372

    Article  CAS  Google Scholar 

  107. Zhao LQ, Zhou B, Li YQ (2011) Heteroat Chem 22:673–677

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. B. Banerjee is thankful to the Akal University, Talwandi Sabo, Punjab, India and the Kalgidhar Trust, Baru Sahib, Himachal Pradesh, India for the support. Authors are grateful to AMRC, IIT Mandi, Himachal Pradesh, India for the spectral measurements such as FT-IR, 1H and 13C NMR, HRMS and single X-ray crystal data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bubun Banerjee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In the memory of our heavenly colleague, Dr. Arvinder Singh, Associate Professor, Department of Botany, Akal University, Talwandi Sabo, Bathinda.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4500 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, B., Priya, A., Kaur, M. et al. Sodium Dodecyl Sulphate Catalyzed One-Pot Three-Component Synthesis of Structurally Diverse 2-Amino-3-cyano Substituted Tetrahydrobenzo[b]pyrans and Spiropyrans in Water at Room Temperature. Catal Lett 153, 3547–3560 (2023). https://doi.org/10.1007/s10562-022-04256-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04256-0

Keywords

Navigation