Skip to main content

Advertisement

Log in

Identification of the Active Sites of Platinum-Ceria Catalysts in Propane Oxidation and Preferential Oxidation of Carbon Monoxide in Hydrogen

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Supported platinum catalysts exhibit versatile applications in heterogeneous catalysis while their active sites are identified difficultly due to the structural complexity of solid catalysts. Herein, via a comprehensive microscopic and spectroscopic study using several PtOx/CeO2 catalysts with well-controlled CeO2 morphology, we found that, besides the CeO2 morphology, the structure of supported platinum species over PtOx/CeO2 catalysts is determined by the reaction atmosphere, dominantly forming components of the platinum-ceria solid solution and fine Pt nanoparticles during propane oxidation and preferential oxidation of CO in hydrogen (CO-PROX) reactions, respectively. Catalytic performance of the platinum-ceria catalysts in propane oxidation is tightly associated with the content of metallic Pt sites which is affected by reducibility of platinum-ceria solid solution, whereas the Pt(II) species arising from the Pt-CeO2 interaction coupling with the surface oxygen vacancy concentration of ceria contribute to the CO reactivity in CO-PROX reaction. There results provide insights into the active sites of platinum-ceria catalysts in both reactions and broadens the concept of morphology-dependent catalysis of oxide-based nanocrystal catalysts that varies with the reactions catalyzed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Taylor HS (1925) A theory of the catalytic surface. Proc R Soc Lond A 108:105–111

    Article  CAS  Google Scholar 

  2. Wang X, Zhuang J, Peng Q et al (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  CAS  PubMed  Google Scholar 

  3. Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35:1195–1208

    Article  CAS  PubMed  Google Scholar 

  4. Xia Y, Xiong Y, Lim B et al (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Article  CAS  Google Scholar 

  5. Zhou K, Li Y (2012) Catalysis based on nanocrystals with well-facets. Angew Chem Int Ed 51:602–613

    Article  CAS  Google Scholar 

  6. Zhang D, Zhang H, Guo L et al (2009) Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J Mater Chem 19:5220–5225

    Article  CAS  Google Scholar 

  7. Zarea F (2013) Shape-controlled nanostructures in heterogeneous catalysis. Chemsuschem 6:1797–1820

    Article  Google Scholar 

  8. Huang W (2016) Oxide nanocrystal model catalysts. Acc Chem Res 49:520–527

    Article  CAS  PubMed  Google Scholar 

  9. Chen S, Xiong F, Huang W (2019) Surface chemistry catalysis of oxide model catalysts from single crystals to nanocrystals. Surf Sci Rep 74:100471

    Article  CAS  Google Scholar 

  10. Zhang Z, You R, Huang W (2022) Cu2O nanocrystal model catalysts. Chin J Chem 40:846–855

    Article  CAS  Google Scholar 

  11. Wen Y, Huang Q, Zhang Z et al (2022) Morphology-dependent catalysis of CeO2-based nanocrystal model catalysts. Chin J Chem 40:1856–1866

    Article  CAS  Google Scholar 

  12. Zhao X, Susman MD, Rimer JD et al (2021) structure catalytic properties of faceted oxide crystals. ChemCatChem 13:6–27

    Article  CAS  Google Scholar 

  13. Li Y, Shen W (2012) Morphology-dependent nanocatalysis on metal oxides. Sci Chin Chem 42:2485–2496

    Article  Google Scholar 

  14. Li Y, Shen W (2014) Morphology-dependent nanocatalysts: rod-shaped oxides. Chem Soc Rev 43:1543–1574

    Article  PubMed  Google Scholar 

  15. Huang W (2018) Surface chemistry of solid catalysts. Sci Sin Chim 48:1076–1093

    Article  Google Scholar 

  16. Zhang J, Fan L, Zhao F et al (2020) Zinc oxide morphology-dependent Pd/ZnO catalysis in base-free CO2 hydrogenation into formic acid. ChemCatChem 12:5540–5547

    Article  CAS  Google Scholar 

  17. Zhang Z, Chen X, Kang J et al (2021) The active sites of Cu-ZnO catalysts for water gas shift and CO hydrogenation reactions. Nat Commun 12:4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liao W, Tang C, Zheng H et al (2022) Tuning activity and selectivity of CO2 hydrogenation via metal-oxide interfaces over ZnO-supported metal catalysts. J Catal 407:126–140

    Article  CAS  Google Scholar 

  19. Yu S, Huang H, Tang C et al (2014) The effect of accessible oxygen over Co3O4-CeO2 catalysts on the steam reforming of ethanol. Int J Hydrog Energy 39:20700–20711

    Article  CAS  Google Scholar 

  20. Sun C, Xue D (2013) Size-dependent oxygen storage ability of nano-sized ceria. Phys Chem Chem Phys 15:14414–14419

    Article  CAS  PubMed  Google Scholar 

  21. Montini T, Melchionna M, Monai M et al (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041

    Article  CAS  PubMed  Google Scholar 

  22. Huang W (2013) Crystal plane-dependent surface reactivity and catalytic property of oxide catalysts studied with oxide nanocrystal model catalysts. Top Catal 56:1363–1376

    Article  CAS  Google Scholar 

  23. Huang W, Gao Y (2014) Morphology-dependent surface chemistry catalysis of CeO2 nanocrystals. Catal Sci Technol 4:3772–3784

    Article  CAS  Google Scholar 

  24. Qiao Z, Wu Z, Dai S (2013) Shape-controlled ceria-based nanostructures for catalysis applications. Chemsuschem 6:1821–1833

    Article  CAS  PubMed  Google Scholar 

  25. Trovarelli A, Llorca J (2017) Ceria catalysts at nanoscale: how do crystal shapes shape catalysis? ACS Catal 7:4716–4735

    Article  CAS  Google Scholar 

  26. Zhou K, Wang X, Sun X et al (2005) Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J Catal 229:206–212

    Article  CAS  Google Scholar 

  27. Aneggi E, Llorca J, Boaro M et al (2005) Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders. J Catal 234:88–95

    Article  CAS  Google Scholar 

  28. Wu Z, Li M, Overbury S (2012) On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J Catal 285:61–73

    Article  CAS  Google Scholar 

  29. Zhang Z, Wang Z, Li Z et al (2020) Metal-free ceria catalysis for selective hydrogenation of crotonaldehyde. ACS Catal 10:14560–14566

    Article  CAS  Google Scholar 

  30. Cao T, You R, Li Z et al (2020) Morphology-dependent CeO2 catalysis in acetylene semihydrogenation reaction. Appl Surf Sci 501:144120

    Article  CAS  Google Scholar 

  31. Li M, Wu Z, Overbury S (2013) Surface structure dependence of selective oxidation of ethanol on faceted CeO2 nanocrystals. J Catal 306:164–176

    Article  CAS  Google Scholar 

  32. Chang S, Li M, Hua Q et al (2012) Shape-dependent interplay between oxygen vacancies and Ag-CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity. J Catal 293:195–204

    Article  CAS  Google Scholar 

  33. Gao Y, Wang W, Chang S et al (2013) Morphology effect of CeO2 support in the preparation, metal-support interaction, and catalytic performance of Pt/CeO2 catalysts. ChemCatChem 5:3610–3620

    Article  CAS  Google Scholar 

  34. Si R, Flytzani-Stephanopoulos M (2008) Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew Chem Int Ed 47:2884–2887

    Article  CAS  Google Scholar 

  35. Yi G, Xu N, Guo G et al (2009) Morphology effects of nanocrystalline CeO2 on the preferential CO oxidation in H2-rich gas over Au/CeO2 catalyst. Chem Phys Lett 479:128–132

    Article  CAS  Google Scholar 

  36. Yi G, Yang H, Li B et al (2010) Preferential CO oxidation in a H2-rich gas by Au/CeO2 catalysts: nanoscale CeO2 shape effect and mechanism aspect. Catal Today 157:83–88

    Article  CAS  Google Scholar 

  37. Fan L, Zhang J, Ma K et al (2021) Ceria morphology-dependent Pd-CeO2 interaction and catalysis in CO2 hydrogenation into formate. J Catal 397:116–127

    Article  CAS  Google Scholar 

  38. Salaev MA, Salaeva AA, Kharlamova TS et al (2021) Pt-CeO2-based composites in environmental catalysis: a review. Appl Catal B: Environ 295:120286

    Article  CAS  Google Scholar 

  39. Dong J, Li D, Zhang Y et al (2022) Insights into the CeO2 facet-depended performance of propane oxidation over Pt-CeO2 catalysts. J Catal 407:174–185

    Article  CAS  Google Scholar 

  40. Zhou A, Wang J, Wang H et al (2018) Effect of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation. J Rare Earths 36:257–264

    Article  CAS  Google Scholar 

  41. Chang S, Jia Y, Zeng Y et al (2022) Effect of interaction between different CeO2 plane and platinum nanoparticles on catalytic activity of Pt/CeO2 in toluene oxidation. J Rare Earths 40:1743–1750

    Article  CAS  Google Scholar 

  42. Peng R, Sun X, Li S et al (2016) Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene. Chem Eng J 306:1234–1246

    Article  CAS  Google Scholar 

  43. Garzon FP, Bao Z, Zhang X et al (2019) Surface reconstructions of metal oxides and the consequences on catalytic chemistry. ACS Catal 9:5692–5707

    Article  Google Scholar 

  44. Mai H, Sun L, Zhang Y et al (2005) Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B 109:24380–24385

    Article  CAS  PubMed  Google Scholar 

  45. Gao Y, Zhang Z, Li Z et al (2020) Understanding morphology-dependent CuOx-CeO2 interactions from the very beginning. Chin J Catal 41:1006–1016

    Article  CAS  Google Scholar 

  46. Zhang J, Gong X, Lu G (2015) Catalytic activities of CeO2(110)-2×1 reconstructed surface. Surf Sci 632:164–173

    Article  CAS  Google Scholar 

  47. Zhou C, Wang D, Gong X (2019) A DFT+U revisit on reconstructed CeO2(100) surfaces: structures, thermostabilities and reactivities. Phys Chem Chem Phys 21:19987–19994

    Article  CAS  PubMed  Google Scholar 

  48. Gao Y, Li R, Chen S et al (2015) Morphology-dependent interplay of reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals. Phys Chem Chem Phys 17:31862–31871

    Article  CAS  PubMed  Google Scholar 

  49. Weber WH, Hass KC, McBride JR (1993) Raman study of CeO2: second-order scattering, lattice dynamics, and particle-size effects. Phy Rev B 48:178–185

    Article  CAS  Google Scholar 

  50. Nakajima A, Yoshihara A, Ishigame M (1994) Defect-induced Raman spectra in doped CeO2. Phys Rev B 50:13297–13307

    Article  CAS  Google Scholar 

  51. Taniguchi T, Watanabe T, Sugiyama N et al (2020) Identifying defects in ceria-based nanocrystals by UV resonance Raman spectroscopy. J Phys Chem C 113:19789–19793

    Article  Google Scholar 

  52. Lee J, Ryou Y, Chan X et al (2016) How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: the origin of improved thermal stability of Pt/CeO2 compared to CeO2. J Phys Chem C 120:25870–25879

    Article  CAS  Google Scholar 

  53. Ye X, Wang H, Lin Y et al (2019) Insight of the stability and activity of platinum single atoms on ceria. Nano Res 12:1401–1409

    Article  CAS  Google Scholar 

  54. Stadnichenko AI, Murav’ev VV, Svetlichnyi VA, et al (2017) Platinum state in highly active Pt/CeO2 catalysts from the X-ray photoelectron spectroscopy data. J Struct Chem 58:1152–1159

    Article  CAS  Google Scholar 

  55. Yang Q, Li L, Wang X et al (2022) Tunable metal-support interaction of Pt/CeO2 catalyst via surfactant-assisted strategy: insight into the total oxidation of CO and toluene. J Haz Mat 424:127601

    Article  CAS  Google Scholar 

  56. Ning J, Dong C, Li M et al (2020) Dispersion of copper oxide species on nanostructured ceria. J Chem Phys 152:094708

    Article  CAS  PubMed  Google Scholar 

  57. Zhang X, You R, Li D et al (2017) Reaction sensitivity of ceria morphology effect on Ni/CeO2 catalysis in propane oxidation reactions. ACS Appl Mater Interfaces 9:35897–35907

    Article  CAS  PubMed  Google Scholar 

  58. You R, Li Z, Cao T et al (2018) Synthesis in a glovebox: utilizing surface oxygen vacancies to enhance the atomic dispersion of palladium on ceria for carbon monoxide oxidation and propane combustion. ACS Appl Nano Mater 1:4988–4997

    Article  CAS  Google Scholar 

  59. Liu Y, Li X, Liao W et al (2019) Highly active Pt/BN catalysts for propane combustion: the roles of support and reactant-induced evolution of active sites. ACS Catal 9:1472–1481

    Article  CAS  Google Scholar 

  60. Chen Y, Lin J, Li L et al (2018) Identifying size effects of Pt as single atoms and nanoparticles supported on FeOx for the water-gas shift reaction. ACS Catal 8:859–868

    Article  CAS  Google Scholar 

  61. Song B, Si S, Soleymani A et al (2022) Effect of ceria surface facet on stability and reactivity of isolated platinum atoms. Nano Res 15:5922–5932

    Article  CAS  Google Scholar 

  62. Kale MJ, Christopher P (2016) Utilizing quantitative in situ FTIR spectroscopy to identify well-coordinated Pt atoms as the active site for CO oxidation on Al2O3-supported Pt catalysts. ACS Catal 6:5599–5609

    Article  CAS  Google Scholar 

  63. Zhang X, Li Z, Pei W et al (2022) Crystal-phase-mediated restructuring of Pt on TiO2 with tunable reactivity: redispersion versus reshaping. ACS Catal 12:3634–3643

    Article  CAS  Google Scholar 

  64. Bugrova TA, Kharlamova TS, Svetlichnyi VA et al (2021) Insights into formation of Pt species in Pt/CeO2 catalysts: effect of treatment conditions and metal-support interaction. Catal Today 375:36–47

    Article  CAS  Google Scholar 

  65. Lee J, Ryou Y, Kim J et al (2018) Influence of the defect concentration of ceria on the Pt dispersion and the CO oxidation activity of Pt/CeO2. J Phys Chem C 122:4972–4983

    Article  CAS  Google Scholar 

  66. Wang B, Chen B, Sun Y et al (2018) Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts. Appl Catal B: Environ 238:328–338

    Article  CAS  Google Scholar 

  67. Guo Y, Mei S, Yuan K et al (2018) Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect. ACS Catal 8:6203–6215

    Article  CAS  Google Scholar 

  68. Hu Z, Liu X, Meng D et al (2016) Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/Ceria for CO and propane oxidation. ACS Catal 6:2265–2279

    Article  CAS  Google Scholar 

  69. Chen S, Luo L, Jiang Z et al (2015) Size-dependent reaction pathways of low-temperature CO oxidation on Au/CeO2 catalysts. ACS Catal 5:1653–1662

    Article  CAS  Google Scholar 

  70. Zhang Z, Wang S, Song R et al (2017) The most active Cu facet for low-temperature water gas shift reaction. Nat Commun 8:488

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhang J, Liao W, Zheng H et al (2022) Morphology-engineered highly active and stable Pd/TiO2 catalysts for CO2 hydrogenation into formate. J Catal 405:152–163

    Article  CAS  Google Scholar 

  72. Ma K, Liao W, Shi W et al (2022) Ceria-supported Pd catalysts with different size regimes ranging from single atoms to nanoparticles for the oxidation of CO. J Catal 407:104–114

    Article  CAS  Google Scholar 

  73. Liu X, Zhou K, Wang L et al (2009) Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J Am Chem Soc 131:3140–3141

    Article  CAS  PubMed  Google Scholar 

  74. Zhao P, Chen J, Yu H et al (2020) Insights into propane combustion over MoO3 promoted Pt/ZrO2 catalysts: the generation of Pt-MoO3 interface and its promotional role on catalytic activity. J Catal 391:80–90

    Article  CAS  Google Scholar 

  75. Zhang Z, Zhang L, Yao S et al (2019) Support dependent rate-determining step of CO2 hydrogenation to formic acid on metal oxide supported Pd catalysts. J Catal 376:57–6775

    Article  CAS  Google Scholar 

  76. Zhang Z, Zhang L, Hülsey MJ et al (2019) Zirconia phase effect in Pd/ZrO2 catalyzed CO2 hydrogenation into formate. Mol Catal 475:110461

    Article  CAS  Google Scholar 

  77. Chen S, Cao T, Gao Y et al (2016) Probing surface structures of CeO2, TiO2, and Cu2O nanocrystals with CO and CO2 chemisorption. J Phys Chem C 120:21472–21485

    Article  CAS  Google Scholar 

  78. Zhang Z, Fan L, Liao W et al (2022) Structure sensitivity of CuO in CO oxidation over CeO2-CuO/Cu2O catalysts. J Catal 405:333–345

    Article  CAS  Google Scholar 

  79. Zheng H, Liao W, Ding J et al (2022) Unveiling the key factors in determining the activity and selectivity of CO2 hydrogenation over Ni/CeO2 catalysts. ACS Catal 12:15451–15462

    Article  CAS  Google Scholar 

  80. Wen Y, Xia L, Zhang J et al (2022) Tailoring Ir-FeOx interactions and catalytic performance in preferential oxidation of CO in H2 via the morphology engineering of anatase TiO2 over Ir-FeOx/TiO2 catalysts. Mol Catal 528:112524

    Article  CAS  Google Scholar 

  81. Brugnoli L, Pedone A, Menziani MC et al (2020) O2 activation over Ag-decorated CeO2(111) and TiO2(110) surfaces: a theoretical comparative investigation. J Phys Chem C 124:25917–25930

    Article  CAS  Google Scholar 

Download references

Funding

Jinhua Industrial Key Project, 20221080, self-designed scientific research project of Zhejiang Normal University, 2021ZS0602, Natural Science Foundation of Zhejiang Province, LQ20B030007, This work is financially supported by the National Natural Science Foundation of China (No. 22102146).

Author information

Authors and Affiliations

Authors

Contributions

ZZ designed and supervised the project. KZ and QL carried out all experiments. ZW, WL, ZY, and JL assisted with the experiments. ZZ prepared the manuscript and other authors commented on the manuscript.

Corresponding authors

Correspondence to Zheliang Yuan, Jiqing Lu or Zhenhua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 555 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Li, Q., Liao, W. et al. Identification of the Active Sites of Platinum-Ceria Catalysts in Propane Oxidation and Preferential Oxidation of Carbon Monoxide in Hydrogen. Catal Lett 153, 3634–3650 (2023). https://doi.org/10.1007/s10562-022-04254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04254-2

Keywords

Navigation