Skip to main content

Advertisement

Log in

Effect of Titanium Dioxide Support for Cobalt Nanoparticle Catalysts for Hydrogen Generation from Sodium Borohydride Hydrolysis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The influence of the structural differences in titanium dioxide (TiO2- Degussa P25 and Mesh 325) as supporting materials for cobalt (Co) nanoparticles, has been revealed in aqueous and alkaline sodium borohydride (NaBH4) hydrolysis. The very little amount of Co nanoparticles, which was 2.2 and 1.5 wt%, has been successfully embedded on TiO2 (P25) and TiO2 (Mesh 325), respectively, via facile impregnation and magnetic separation method. The activation energies for TiO2 (Mesh 325)/Co and TiO2 (P25)/Co catalysts in the aqueous solution of NaBH4 were 64.3 kJ.mol−1 and 56.76 kJ.mol−1, respectively. On the other hand, the activation energy values of the hydrolysis process in alkaline NaBH4 solutions using TiO2 (Mesh 325)/Co and TiO2 (P25)/Co catalysts have been calculated as 55 kJ.mol−1 and 45.2 kJ.mol−1, respectively. Consequently, the hydrogen generation rate (HGR) for TiO2(Mesh 325)/Co and TiO2(P25)/Co in an aqueous-alkaline solution are 360 and 660 mL.min.gcat−1, respectively which are twice higher in that of aqueous NaBH4 hydrolysis reaction. The maximum HGR of 9000 mL.min−1.gcat−1 for TiO2(P25) loaded with 2.2 wt% Co in an aqueous-alkaline solution at 60 °C, indicates this catalysis is very promising as the cost-effective catalytic hydrolysis of NaBH4.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Staffell I, Scamman D, Velazquez Abad A et al (2019) The role of hydrogen and fuel cells in the global energy system. Energy Environ Sci 12:463–491. https://doi.org/10.1039/c8ee01157e

    Article  CAS  Google Scholar 

  2. Sankir ND, Sankir M (2017) Hydrogen production technologies. Wiley, Scrivener Publishing

    Book  Google Scholar 

  3. Sankir ND, Sankir M (2018) Hydrogen storage technologies. Wiley, Scrivener Publishing

    Book  Google Scholar 

  4. Liu X, Zhang X, Li DS et al (2021) Recent advances in the “on-off” approaches for on-demand liquid-phase hydrogen evolution. J Mater Chem A 9:18164–18174. https://doi.org/10.1039/d1ta05892d

    Article  CAS  Google Scholar 

  5. Xu F, Liu X (2021) “On–off” control for on-demand hydrogen production from the dehydrogenation of formic acid. ACS Catal 11:13913–13920. https://doi.org/10.1021/acscatal.1c03923

    Article  CAS  Google Scholar 

  6. Xu F, Huang W, Wang Y et al (2022) Efficient and controlled H2 release from sodium formate. Inorg Chem Front 9:3514–3521. https://doi.org/10.1039/D2QI00774F

    Article  CAS  Google Scholar 

  7. Kytsya A, Berezovets V, Verbovytskyy Y et al (2022) Bimetallic Ni-Co nanoparticles as an efficient catalyst of hydrogen generation via hydrolysis of NaBH4. J Alloys Compd 908:164484. https://doi.org/10.1016/j.jallcom.2022.164484

    Article  CAS  Google Scholar 

  8. Yang F, Zou Y, Xiang C et al (2022) Synthesis of “needle-cluster” NiCo2O4 carbon nanofibers and loading of Co-B nanoparticles for hydrogen production through the hydrolysis of NaBH4. J Alloys Compd 911:165069. https://doi.org/10.1016/j.jallcom.2022.165069

    Article  CAS  Google Scholar 

  9. Wei Y, Wang M, Fu W et al (2020) Highly active and durable catalyst for hydrogen generation by the NaBH4 hydrolysis reaction: Cowb/NF nanodendrite with an acicular array structure. J Alloys Compd 836:155429. https://doi.org/10.1016/j.jallcom.2020.155429

    Article  CAS  Google Scholar 

  10. Minkina VG, Shabunya SI, Kalinin VI (2008) Long-term stability of sodium borohydrides for hydrogen generation long-term stability of sodium borohydrides for hydrogen generation. Int J Hydrogen Energy 33:5629–5635. https://doi.org/10.1016/j.ijhydene.2008.07.037

    Article  CAS  Google Scholar 

  11. Shabunya SI, Minkina VG, Kalinin VI et al (2021) Russian text © the author(s), 2021. Kinet Catal 62:305–315. https://doi.org/10.1134/S0023158421030083

    Article  Google Scholar 

  12. Colak TO, Tuc Altaf C, Minkina VG et al (2021) Efficient hydrogen generation with Co3O4@TiO2-g-C3N4 composite catalyst via catalytic NaBH4 hydrolysis. Catal Lett. https://doi.org/10.1007/s10562-021-03848-6

    Article  Google Scholar 

  13. Zhou J, Yan J, Meng X et al (2021) Co 0 . 45 W 0 . 55 nanocomposite from ZIF—67: an efficient and heterogeneous catalyst for—H2 generation upon N. Catal Lett. https://doi.org/10.1007/s10562-021-03661-1

    Article  Google Scholar 

  14. Crisafulli C, Scire S, Zito R, Bongiorno C (2012) Role of the support and the Ru precursor on the performance of Ru/carbon catalysts towards H2 production through NaBH4 hydrolysis. Catal Lett 142:882–888. https://doi.org/10.1007/s10562-012-0844-y

    Article  CAS  Google Scholar 

  15. Semiz L, Abdullayeva N, Sankir M (2018) Nanoporous Pt and Ru catalysts by chemical dealloying of Pt-Al and Ru-Al alloys for ultrafast hydrogen generation. J Alloys Compd 744:110–115. https://doi.org/10.1016/j.jallcom.2018.02.082

    Article  CAS  Google Scholar 

  16. Özkar S, Zahmakiran M (2005) Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst. J Alloys Compd 404–406:728–731. https://doi.org/10.1016/j.jallcom.2004.10.084

    Article  CAS  Google Scholar 

  17. Li T, Xiang C, Chu H et al (2022) Catalytic effect of highly dispersed ultrafine Ru nanoparticles on a TiO2-Ti3C2 support: hydrolysis of sodium borohydride for H2 generation. J Alloys Compd 906:164380. https://doi.org/10.1016/j.jallcom.2022.164380

    Article  CAS  Google Scholar 

  18. Sankir M, Serin RB, Semiz L, Sankir ND (2014) Unusual behavior of dynamic hydrogen generation from sodium borohydride. Int J Hydrogen Energy 39:2608–2613. https://doi.org/10.1016/j.ijhydene.2013.12.011

    Article  CAS  Google Scholar 

  19. Zhang J, Li Y, Yang L et al (2021) Ruthenium nanosheets decorated cobalt foam for controllable hydrogen production from sodium borohydride hydrolysis. Catal Lett. https://doi.org/10.1007/s10562-021-03730-5

    Article  Google Scholar 

  20. Bandal HA, Jadhav AR, Kim H (2017) Cobalt impregnated magnetite-multiwalled carbon nanotube nanocomposite as magnetically separable efficient catalyst for hydrogen generation by NaBH4 hydrolysis. J Alloys Compd 699:1057–1067. https://doi.org/10.1016/j.jallcom.2016.12.428

    Article  CAS  Google Scholar 

  21. Mahpudz A, Ling S, Inokawa H et al (2021) Cobalt nanoparticle supported on layered double hydroxide : Effect of nanoparticle size on catalytic hydrogen production by NaBH4 hydrolysis. Environ Pollut 290:117990. https://doi.org/10.1016/j.envpol.2021.117990

    Article  CAS  PubMed  Google Scholar 

  22. Patil KN, Prasad D, Bhanushali JT et al (2020) Sustainable hydrogen generation by catalytic hydrolysis of—NaBH4 using tailored nanostructured urchin—like—CuCo2O4 spinel catalyst. Catal Lett 150:586–604. https://doi.org/10.1007/s10562-019-03025-w

    Article  CAS  Google Scholar 

  23. Minkina VG, Shabunya SI, Kalinin VI, Martynenko VV (2022) Hydrogen generation from hydrolysis of concentrated NaBH4 solutions under adiabatic conditions. Int J Hydrogen Energy 47:21772–21781. https://doi.org/10.1016/j.ijhydene.2022.05.006

    Article  CAS  Google Scholar 

  24. Li T, Xiang C, Zou Y et al (2021) Synthesis of highly stable cobalt nanorods anchored on a Ti4N3Tx MXene composite for the hydrolysis of sodium borohydride. J Alloys Compd 885:160991. https://doi.org/10.1016/j.jallcom.2021.160991

    Article  CAS  Google Scholar 

  25. Li R, Zhang F, Zhang J, Dong H (2022) Catalytic hydrolysis of NaBH4 over titanate nanotube supported Co for hydrogen production. Int J Hydrogen Energy 47:5260–5268. https://doi.org/10.1016/j.ijhydene.2021.11.143

    Article  CAS  Google Scholar 

  26. Dönmez F, Ayas N (2020) Synthesis of Ni/TiO2 catalyst by sol-gel method for hydrogen production from sodium borohydride. Int J Hydrogen Energy 6:1–9. https://doi.org/10.1016/j.ijhydene.2020.11.233

    Article  CAS  Google Scholar 

  27. Shen X, Wang Q, Wu Q et al (2015) CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution. Energy 90:464–474. https://doi.org/10.1016/j.energy.2015.07.075

    Article  CAS  Google Scholar 

  28. Cheng J, Xiang C, Zou Y et al (2015) Highly active nanoporous Co-B-TiO2 framework for hydrolysis of NaBH4. Ceram Int 41:899–905. https://doi.org/10.1016/j.ceramint.2014.09.007

    Article  CAS  Google Scholar 

  29. Kılınç D, Şahin Ö (2019) Effective TiO2 supported Cu-Complex catalyst in NaBH4 hydrolysis reaction to hydrogen generation. Int J Hydrogen Energy 44:18858–18865. https://doi.org/10.1016/j.ijhydene.2018.12.225

    Article  CAS  Google Scholar 

  30. Zhang J, Li J, Yang L et al (2021) Efficient hydrogen production from ammonia borane hydrolysis catalyzed by TiO2-supported RuCo catalysts. Int J Hydrogen Energy 46:3964–3973. https://doi.org/10.1016/j.ijhydene.2020.10.234

    Article  CAS  Google Scholar 

  31. Baamran KS, Tahir M, Mohamed M, Hussain Khoja A (2020) Effect of support size for stimulating hydrogen production in phenol steam reforming using Ni-embedded TiO2 nanocatalyst. J Environ Chem Eng 8:103604. https://doi.org/10.1016/j.jece.2019.103604

    Article  CAS  Google Scholar 

  32. Kim DS, Kwak S-Y (2007) The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl Catal A Gen 323:110–118. https://doi.org/10.1016/j.apcata.2007.02.010

    Article  CAS  Google Scholar 

  33. Lim J, Um JH, Lee KJ et al (2016) Simple size control of TiO2 nanoparticles and their electrochemical performance: emphasizing the contribution of the surface area to lithium storage at high-rates. Nanoscale 8:5688–5695. https://doi.org/10.1039/C6NR00104A

    Article  CAS  PubMed  Google Scholar 

  34. Lee CS, Kim JK, Park JT, Kim JH (2016) Well-organized mesoporous TiO2 film with high porosity made using alcohol-assisted EC-g-PMMA graft copolymer. Macromol Res 24:573–576. https://doi.org/10.1007/s13233-016-4074-9

    Article  CAS  Google Scholar 

  35. Tschirch J, Bahnemann D, Wark M, Rathouský J (2008) A comparative study into the photocatalytic properties of thin mesoporous layers of TiO2 with controlled mesoporosity. J Photochem Photobiol A Chem 194:181–188. https://doi.org/10.1016/j.jphotochem.2007.08.005

    Article  CAS  Google Scholar 

  36. Sreethawong T, Yamada Y, Kobayashi T, Yoshikawa S (2005) Catalysis of nanocrystalline mesoporous TiO2 on cyclohexene epoxidation with H2O2: Effects of mesoporosity and metal oxide additives. J Mol Catal A Chem 241:23–32. https://doi.org/10.1016/j.molcata.2005.07.009

    Article  CAS  Google Scholar 

  37. Li J-J, Zhang M, Weng B et al (2020) Zero-degree photochemical synthesis of highly dispersed Pt/TiO2 for enhanced photocatalytic hydrogen generation. J Alloys Compd 849:156634. https://doi.org/10.1016/j.jallcom.2020.156634

    Article  CAS  Google Scholar 

  38. Chen W-T, Chan A, Sun-Waterhouse D et al (2018) Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures. J Catal 367:27–42. https://doi.org/10.1016/j.jcat.2018.08.015

    Article  CAS  Google Scholar 

  39. Toledo Camacho SY, Rey A, Hernández-Alonso MD et al (2018) Pd/TiO2-WO3 photocatalysts for hydrogen generation from water-methanol mixtures. Appl Surf Sci 455:570–580. https://doi.org/10.1016/j.apsusc.2018.05.122

    Article  CAS  Google Scholar 

  40. Martínez L, Soler L, Angurell I, Llorca J (2019) Effect of TiO2 nanoshape on the photoproduction of hydrogen from water-ethanol mixtures over Au3Cu/TiO2 prepared with preformed Au-Cu alloy nanoparticles. Appl Catal B Environ 248:504–514. https://doi.org/10.1016/j.apcatb.2019.02.053

    Article  CAS  Google Scholar 

  41. Hussain E, Majeed I, Nadeem MA et al (2019) Remarkable effect of BaO on photocatalytic H2 evolution from water splitting via TiO2 (P25) supported palladium nanoparticles. J Environ Chem Eng 7:102729. https://doi.org/10.1016/j.jece.2018.10.044

    Article  CAS  Google Scholar 

  42. Camposeco R, Castillo S, Hinojosa-Reyes M et al (2018) Effect of incorporating vanadium oxide to TiO2, Zeolite-ZM5, SBA and P25 supports on the photocatalytic activity under visible light. J Photochem Photobiol A Chem 367:178–187. https://doi.org/10.1016/j.jphotochem.2018.08.011

    Article  CAS  Google Scholar 

  43. González-Burciaga LA, Núñez-Núñez CM, Morones-Esquivel MM et al (2020) Characterization and comparative performance of tio2 photocatalysts on 6-mercaptopurine degradation by solar heterogeneous photocatalysis. Catalysts. https://doi.org/10.3390/catal10010118

    Article  Google Scholar 

  44. Nguyen HH, Gyawali G, Kim TH et al (2018) Blue TiO2 polymorph: an efficient material for dye-sensitized solar cells fabricated using a low-temperature sintering process. Prog Nat Sci Mater Int 28:548–553. https://doi.org/10.1016/j.pnsc.2018.08.003

    Article  CAS  Google Scholar 

  45. Liu Y, Zhu J, Liu X, Li H (2016) A convenient approach of MIP/Co-TiO2 nanocomposites with highly enhanced photocatalytic activity and selectivity under visible light irradiation. RSC Adv 6:69326–69333. https://doi.org/10.1039/c6ra10727c

    Article  CAS  Google Scholar 

  46. Van Deelen TW, Nijhuis JJ, Krans NA et al (2018) Preparation of cobalt nanocrystals supported on metal oxides to study particle growth in fischer-tropsch catalysts. ACS Catal 8:10581–10589. https://doi.org/10.1021/acscatal.8b03094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Drǎgan N, Crişan M, Rǎileanu M et al (2014) The effect of Co dopant on TiO2 structure of sol-gel nanopowders used as photocatalysts. Ceram Int 40:12273–12284. https://doi.org/10.1016/j.ceramint.2014.04.072

    Article  CAS  Google Scholar 

  48. Wang L, Qi T, Wang J et al (2018) Uniform dispersion of cobalt nanoparticles over nonporous TiO2 with low activation energy for magnesium sulfate recovery in a novel magnesia-based desulfurization process. J Hazard Mater 342:579–588. https://doi.org/10.1016/j.jhazmat.2017.08.080

    Article  CAS  PubMed  Google Scholar 

  49. Demidova Y, Simakova I, Prosvirin I et al (2016) Size-controlled synthesis of Ni and Co metal nanoparticles by the modified polyol method. Int J Nanotechnol 13:3–14. https://doi.org/10.1504/IJNT.2016.074519

    Article  CAS  Google Scholar 

  50. Bardestani R, Patience GS, Kaliaguine S (2019) Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can J Chem Eng 97:2781–2791. https://doi.org/10.1002/cjce.23632

    Article  CAS  Google Scholar 

  51. Khan M, Ware P, Shimpi N (2021) Synthesis of ZnO nanoparticles using peels of Passiflora foetida and study of its activity as an efficient catalyst for the degradation of hazardous organic dye. SN Appl Sci 3:528. https://doi.org/10.1007/s42452-021-04436-4

    Article  CAS  Google Scholar 

  52. Landers J, Gor GY, Neimark AV (2013) Density functional theory methods for characterization of porous materials. Coll Sur A Physicochem Eng Asp 437:3–32. https://doi.org/10.1016/j.colsurfa.2013.01.007

    Article  CAS  Google Scholar 

  53. Kadam AN, Bhopate DP, Kondalkar VV et al (2018) Facile synthesis of Ag-ZnO core–shell nanostructures with enhanced photocatalytic activity. J Ind Eng Chem 61:78–86. https://doi.org/10.1016/j.jiec.2017.12.003

    Article  CAS  Google Scholar 

  54. Singh I, Birajdar B (2017) Synthesis, characterization and photocatalytic activity of mesoporous Na-doped TiO2 nano-powder prepared via a solvent-controlled non-aqueous sol–gel route. RSC Adv 7:54053–54062. https://doi.org/10.1039/C7RA10108B

    Article  CAS  Google Scholar 

  55. Hutchins MMK and JEC (1972) H2BH3 as an intermediate in tetrahydridoborate hydrolysis. J Am Chem Soc 94:6371–6376

    Article  Google Scholar 

  56. Lu YC, Chen MS, Chen YW (2012) Hydrogen generation by sodium borohydride hydrolysis on nanosized CoB catalysts supported on TiO2, Al2O3 and CeO2. Int J Hydrogen Energy 37:4254–4258. https://doi.org/10.1016/j.ijhydene.2011.11.105

    Article  CAS  Google Scholar 

  57. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chemie - Int Ed 44:7852–7872. https://doi.org/10.1002/anie.200500766

    Article  CAS  Google Scholar 

  58. Şahin Ö, İzgi MS, Onat E, Saka C (2016) Influence of the using of methanol instead of water in the preparation of Co–B–TiO2 catalyst for hydrogen production by NaBH4 hydrolysis and plasma treatment effect on the Co–B–TiO2 catalyst. Int J Hydrogen Energy 41:2539–2546. https://doi.org/10.1016/j.ijhydene.2015.11.094

    Article  CAS  Google Scholar 

  59. Balčiūnaitė A, Sukackienė Z, Antanavičiūtė K et al (2021) Investigation of hydrogen generation from sodium borohydride using different cobalt catalysts. Int J Hydrogen Energy 46:1989–1996. https://doi.org/10.1016/j.ijhydene.2020.10.047

    Article  CAS  Google Scholar 

  60. Rakap M, Kalu EE, Özkar S (2011) Cobalt-nickel-phosphorus supported on Pd-activated TiO2 (Co-Ni-P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution. J Alloys Compd 509:7016–7021. https://doi.org/10.1016/j.jallcom.2011.04.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Belarusian Republican Foundation for Basic Research (Project No. T19TYuB-004) and the Council for Scientific and Technological Research of Turkey (TUBITAK) (Project No. 119M030).

Funding

Belarusian Republican Foundation for Basic Research,T19TYuB-004,Council for Scientific and Technological Research of Turkey,119M030

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valentina G. Minkina, Mehmet Sankir or Nurdan Demirci Sankir.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altaf, C.T., Colak, T.O., Minkina, V.G. et al. Effect of Titanium Dioxide Support for Cobalt Nanoparticle Catalysts for Hydrogen Generation from Sodium Borohydride Hydrolysis. Catal Lett 153, 3136–3147 (2023). https://doi.org/10.1007/s10562-022-04215-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04215-9

Keywords

Navigation