Skip to main content

Advertisement

Log in

Ruthenium Nanosheets Decorated Cobalt Foam for Controllable Hydrogen Production from Sodium Borohydride Hydrolysis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A monolithic complexed catalyst composed of a piece of Co foam decorated with Ru nanosheets has been fabricated. This catalyst has demonstrated excellent performance in catalyzing NaBH4 hydrolysis under alkaline conditions. Most importantly, the bulky size of the developed catalyst provides convenience to control the start and stop of hydrogen production by manipulating the attachment and detachment between the catalyst and NaBH4 solution. These features endow this catalyst with great potential for on-site hydrogen supply.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen W, Ouyang LZ, Liu JW, Yao XD, Wang H, Liu ZW et al (2017) J Power Sources 359:400–407

    CAS  Google Scholar 

  2. Ouyang LZ, Chen W, Liu JW, Felderhoff M, Wang H, Zhu M (2017) Adv Energy Mater 7:1700299

    Google Scholar 

  3. Schlesinger HI, Brown HC, Finholt AE, Gilbreath JR, Hoekstra HR, Hyde EK (1953) J Am Chem Soc 75:215–219

    CAS  Google Scholar 

  4. Zhu YY, Ouyang LZ, Zhong H, Liu JW, Wang H, Shao HY et al (2020) Angew Chem Int Ed 59:8623–8629

    CAS  Google Scholar 

  5. Abdelhamid HN (2020) Dalton Trans 49:4416–4424

    CAS  PubMed  Google Scholar 

  6. Al-Thabaiti SA, Khan Z, Malik MA (2019) Int J Hydrogen Energy 44:16452–16466

    CAS  Google Scholar 

  7. Baye AF, Abebe MW, Appiah-Ntiamoah R, Kim H (2019) J Colloid Interf Sci 543:273–284

    CAS  Google Scholar 

  8. Edla R, Gupta S, Patel N, Bazzanella N, Fernandes R, Kothari DC et al (2016) Appl Catal A 515:1–9

    CAS  Google Scholar 

  9. Guan RQ, Zhai HJ, Li JX, Qi YF, Li MX, Song MY et al (2020) Appl Surf Sci 507:144772

    CAS  Google Scholar 

  10. Guo JY, Wang BZ, Yang DD, Wan ZX, Yan PX, Tian JN et al (2020) Appl Catal B 265:118584

    CAS  Google Scholar 

  11. Liu TT, Wang KY, Du G, Asiri AM, Sun XP (2016) J Mater Chem A 4:13053–13057

    CAS  Google Scholar 

  12. Pornea AM, Abebe MW, Kim H (2019) Chem Phys 516:152–159

    CAS  Google Scholar 

  13. Hostert L, Neiva EGC, Zarbin AJG, Orth ES (2018) J Mater Chem A 6:22226–22233

    CAS  Google Scholar 

  14. Kang NX, Djeda R, Wang Q, Fu FY, Ruiz J, Pozzo JL et al (2019) ChemCatChem 11:2341–2349

    CAS  Google Scholar 

  15. Kassem AA, Abdelhamid HN, Fouad DM, Ibrahim SA (2019) Int J Hydrogen Energy 44:31230–31238

    CAS  Google Scholar 

  16. Kilinc D, Sahin O (2019) Int J Hydrogen Energy 44:28391–28401

    CAS  Google Scholar 

  17. Kim C, Lee SS, Li WL, Fortner JD (2020) Appl Catal A 589:117303

    CAS  Google Scholar 

  18. Lee MH, Deka JR, Cheng CJ, Lu NF, Saikia D, Yang YC et al (2019) Appl Surf Sci 470:764–772

    CAS  Google Scholar 

  19. Li Y, Hou XW, Wang J, Feng XL, Cheng LN, Zhang HM et al (2019) Int J Hydrogen Energy 44:29075–29082

    CAS  Google Scholar 

  20. Liu JL, Zhang YX, Xia TY, Zhang QQ, Wang SG, Wang RM et al (2020) Nanotechnology 31:185704

    CAS  PubMed  Google Scholar 

  21. Liu YY, Guo H, Sun K, Jiang JC (2019) Int J Hydrogen Energy 44:28163–28172

    CAS  Google Scholar 

  22. Luo C, Fu FY, Yang XJ, Wei JY, Wang CL, Zhu J et al (2019) ChemCatChem 11:1643–1649

    CAS  Google Scholar 

  23. Nabid MR, Bide Y, Dastar F (2015) Catal Lett 145:1798–1807

    CAS  Google Scholar 

  24. Nabid MR, Bide Y, Kamali B (2019) Int J Hydrogen Energy 44:25662–25670

    CAS  Google Scholar 

  25. Patil KN, Prasad D, Bhanushali JT, Kim H, Atar AB, Nagaraja BM et al (2020) Catal Lett 150:586–604

    CAS  Google Scholar 

  26. Prasad D, Patil KN, Sandhya N, Chaitra CR, Bhanushali JT, Samal AK et al (2019) Appl Surf Sci 489:538–551

    CAS  Google Scholar 

  27. Ro G, Kim Y (2019) Colloid Surface A 577:48–52

    CAS  Google Scholar 

  28. Shi LM, Chen Z, Jian ZY, Guo FH, Gao CL (2019) Int J Hydrogen Energy 44:19868–19877

    CAS  Google Scholar 

  29. Tignol P, Demirci UB (2019) Int J Hydrogen Energy 44:14207–14216

    CAS  Google Scholar 

  30. Wang L, Liu YY, Ashraf S, Jiang JC, Han GS, Gao J et al (2019) J Alloy Compd 808:151774

    CAS  Google Scholar 

  31. Wang SH, Fan YA, Chen MQ, Xie YY, Wang DW, Su CY (2015) J Mater Chem A 3:8250–8255

    CAS  Google Scholar 

  32. Wang Y, Zou KL, Zhang D, Cao ZQ, Zhang K, Xie Y et al (2020) Int J Hydrogen Energy 45:9845–9853

    CAS  Google Scholar 

  33. Wei L, Dong XL, Yang YM, Shi QY, Lu YH, Liu HY et al (2020) Int J Hydrogen Energy 45:10745–10753

    CAS  Google Scholar 

  34. Yao QL, Lu ZH, Huang W, Chen XS, Zhu J (2016) J Mater Chem A 4:8579–8583

    CAS  Google Scholar 

  35. Zhang HM, Feng XL, Cheng LN, Hou XW, Li Y, Han SM (2019) Colloid Surface A 563:112–119

    CAS  Google Scholar 

  36. Zhang XW, Zhang Q, Xu B, Liu XQ, Zhang KM, Fan GY et al (2020) Acs Appl Mater Inter 12:9376–9386

    CAS  Google Scholar 

  37. Zhang XY, Sun XW, Xu DY, Tao XM, Dai P, Guo QJ et al (2019) Appl Surf Sci 469:764–769

    CAS  Google Scholar 

  38. Demirci S, Sunol AK, Sahiner N (2020) Appl Catal B 261:118242

    CAS  Google Scholar 

  39. Lu LL, Zhang HJ, Zhang SW, Li FL (2015) Angew Chem Int Ed 54:9328–9332

    CAS  Google Scholar 

  40. Sahiner N (2017) J Power Sources 366:178–184

    CAS  Google Scholar 

  41. Yang LJ, Huang XS, Zhang JP, Dong H (2020) ChemPlusChem 85:399–404

    CAS  PubMed  Google Scholar 

  42. Sahin O, Bozkurt A, Yayla M, Kazici HC, Izgi MS (2020) Graphene Technol 5:103–111

    Google Scholar 

  43. Brown HC, Brown CA (1962) J Am Chem Soc 84:1493–1494

    CAS  Google Scholar 

  44. Zhang JP, Lin FZ, Yang LJ, He ZY, Huang XS, Zhang DW et al (2020) Chin Chem Lett 31:2019–2022

    CAS  Google Scholar 

  45. Bozkurt G, Ozer A, Yurtcan AB (2019) Energy 180:702–713

    CAS  Google Scholar 

  46. Chowdhury AD, Agnihotri N, De A (2015) Chem Eng J 264:531–537

    CAS  Google Scholar 

  47. Tan MH, Wang Y, Taguchi A, Abe T, Yang GH, Wu MB et al (2019) Int J Hydrogen Energy 44:7320–7325

    CAS  Google Scholar 

  48. Zhu J, Li R, Niu WL, Wu YJ, Gou XL (2013) Int J Hydrogen Energy 38:10864–10870

    CAS  Google Scholar 

  49. Tuan DD, Lin KYA (2018) Chem Eng J 351:48–55

    CAS  Google Scholar 

  50. Guo JY, Wu CB, Zhang JF, Yan PX, Tian JN, Shen XC et al (2019) J Mater Chem A 7:8865–8872

    CAS  Google Scholar 

  51. Wen M, Sun YZ, Li XM, Wu QS, Wu QN, Wang CX (2013) J Power Sources 243:299–305

    CAS  Google Scholar 

  52. Wang WL, Zhao YC, Chen DH, Wang X, Peng XL, Tian JN (2014) Int J Hydrogen Energy 39:16202–16211

    CAS  Google Scholar 

  53. Zhang JP, Lin FZ, Yang LJ, Dong H (2020) Chin Chem Lett 31:2512–2515

    CAS  Google Scholar 

  54. Zhou JJ, Yan JY, Meng X, Chen WF, Guo JF, Liu X (2021). Catal Lett. https://doi.org/10.1007/s10562-10021-03661-10561

    Article  Google Scholar 

  55. Wei YS, Wang Y, Wei L, Zhao XS, Zhou XY, Liu HT (2018) Int J Hydrogen Energy 43:592–600

    CAS  Google Scholar 

  56. Tang C, Zhang R, Lu WB, He LB, Jiang X, Asiri AM et al (2017) Adv Mater 29:1602441

    Google Scholar 

  57. Li K, Ma M, Xie LS, Yao YD, Kong RM, Du G et al (2017) Int J Hydrogen Energy 42:19028–19034

    CAS  Google Scholar 

  58. Tang C, Qu FL, Asiri AM, Luo YL, Sun XP (2017) Inorg Chem Front 4:659–662

    CAS  Google Scholar 

  59. Demirci UB, Miele P (2014) C R Chim 17:707–716

    CAS  Google Scholar 

Download references

Funding

This work was supported by Chengdu University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yilin Li or Hua Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8512 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, Y., Yang, L. et al. Ruthenium Nanosheets Decorated Cobalt Foam for Controllable Hydrogen Production from Sodium Borohydride Hydrolysis. Catal Lett 152, 1386–1391 (2022). https://doi.org/10.1007/s10562-021-03730-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03730-5

Keywords

Navigation